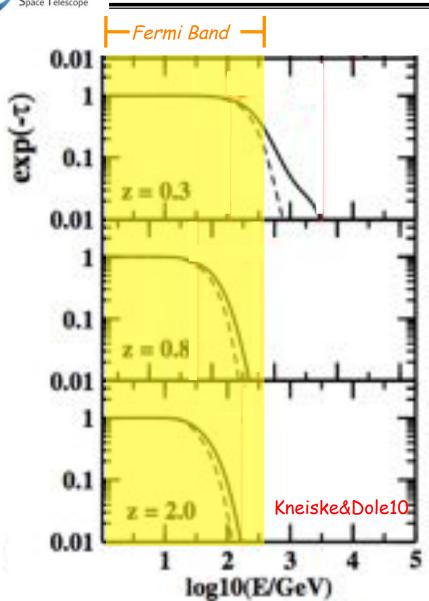


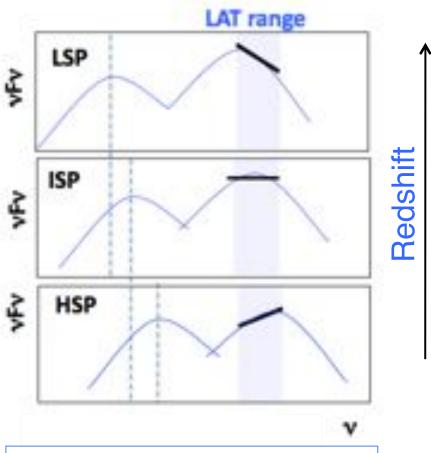
The Imprint of the EBL the Spectra of Blazars


Marco Ajello^{1,2}, Anita Reimer³, Rolf Buehler¹ on behalf of the Fermi-LAT collaboration

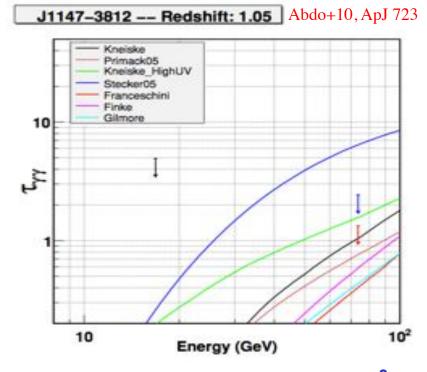
¹KIPAC, ²UCB, ³Univ. Innsbruck

Ackermann+12, in ScienceExpress Today 1

Attenuation due to the EBL

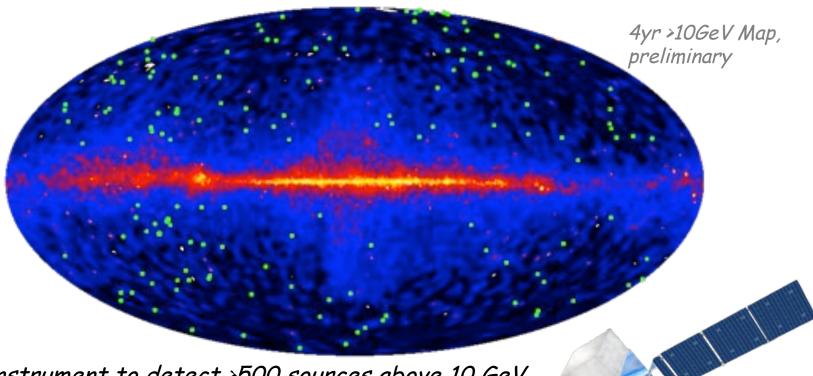


Most models predict an attenuation of >99% at z~1



Predictions and Reality

Reality is far more complex due to the non-standard nature of blazars

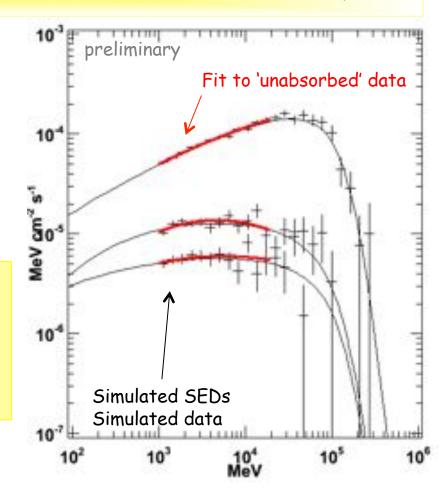


Blazars' spectra are type-dependent and the composition of the blazar sample evolves with redshift So far only upper limits on the opacity were derived (Abdo+10, ApJ 723, 1082, Raue10, etc.)

Fermi observations

•First instrument to detect >500 sources above 10 GeV (D. Paneque's Talk)

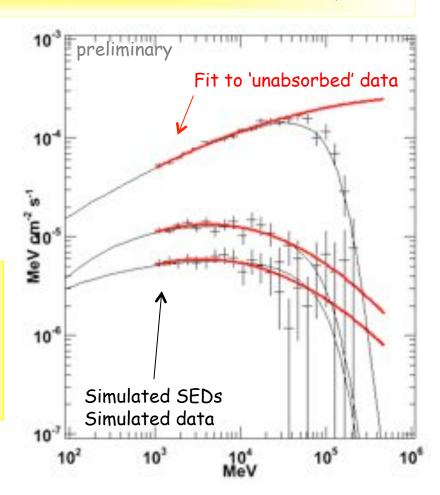
Advantages of Fermi:


- Detects blazars up to high redshift
- •Fermi's bandpass gives unique handling on the `intrinsic' spectrum
- Continue all-sky observations allow us to assess variability issues (none)
- We used the best 150 BL Lacs to measure the EBL

Analysis Procedure

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

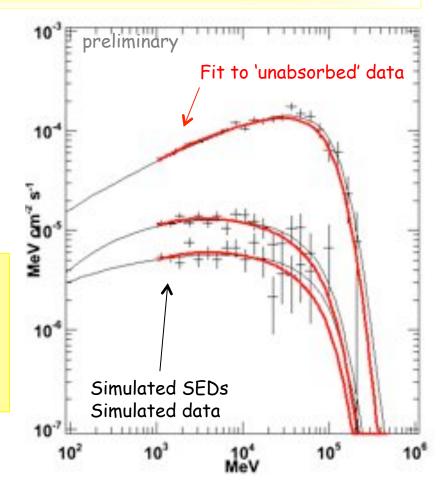
- We use 46months of P7V6 1-500 GeV data
- We define 3 redshift bins with 50 sources each:
 - z= 0-0.2, 0.2-0.5, 0.5 -1.6
- All BL Lacs are modeled with a LogParabola spectrum
- We perform a combined fit where:
 - The spectra of all sources are fit independently
 - The spectra of all sources are modified by a common $e^{-b \tau(E,z)}$ term
- We evaluate 2 cases:
 - 1. Null hypothesis b=0: there is no EBL
 - 2. Null hypothesis b=1: the model predictions are correct


$$F(E)_{absorbed} = F(E)_{\text{int rinsic}} \cdot e^{-b \cdot \tau_{\text{mod }el}}$$

Analysis Procedure

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

- We use 46months of P7V6 1-500 GeV data
- We define 3 redshift bins with 50 sources each:
 - z= 0-0.2, 0.2-0.5, 0.5 -1.6
- All BL Lacs are modeled with a LogParabola spectrum
- We perform a combined fit where:
 - The spectra of all sources are fit independently
 - The spectra of all sources are modified by a common $e^{-b \tau(E,z)}$ term
 - We evaluate 2 cases:
 - 1. Null hypothesis b=0: there is no EBL
 - 2. Null hypothesis b=1: the model predictions are correct


$$F(E)_{absorbed} = F(E)_{\text{int rinsic}} \cdot e^{-b \cdot \tau_{\text{mod }el}}$$

Analysis Procedure

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

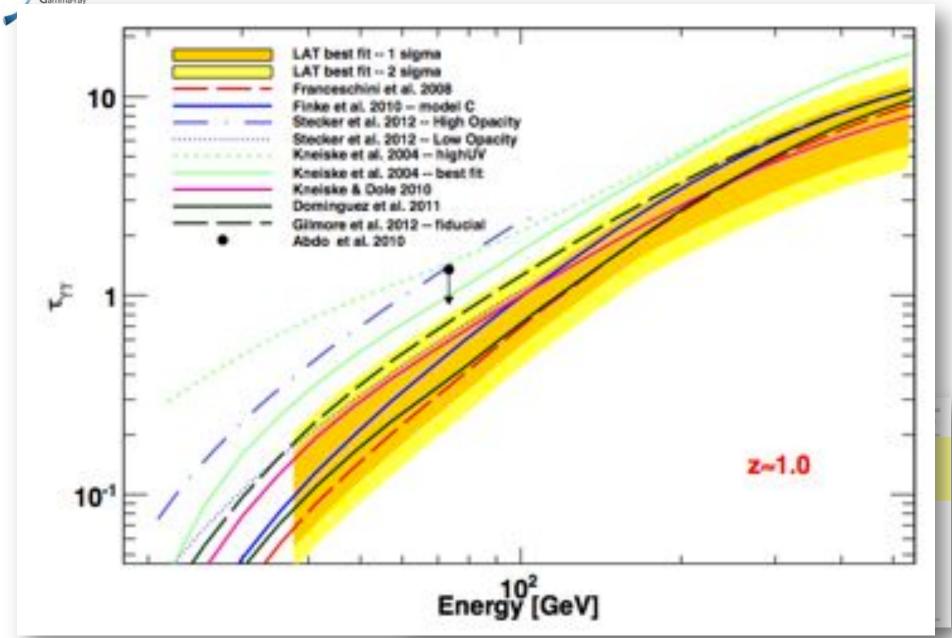
- We use 46months of P7V6 1-500 GeV data
- We define 3 redshift bins with 50 sources each:
 - z= 0-0.2, 0.2-0.5, 0.5 -1.6
- All BL Lacs are modeled with a LogParabola spectrum
- We perform a combined fit where:
 - The spectra of all sources are fit independently
 - The spectra of all sources are modified by a common $e^{-b \tau(E,z)}$ term
 - We evaluate 2 cases:
 - 1. Null hypothesis b=0: there is no EBL
 - 2. Null hypothesis b=1: the model predictions are correct

$$F(E)_{absorbed} = F(E)_{\text{int rinsic}} \cdot e^{-b \cdot \tau_{\text{mod }el}}$$

Composite Likelihood Results: 1

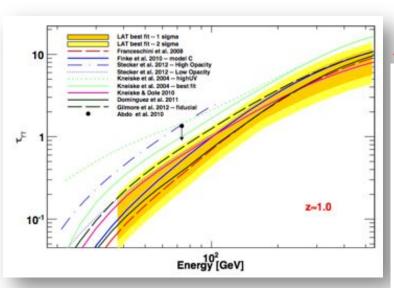
Significance of the Detection:

$$F(E)_{absorbed} = F(E)_{int \ rinsic} \cdot e^{-b \tau_{mod \ el}}$$


- Best-fit versus null hypothesis <u>b=0</u>: i.e. there is no EBL
- · Significance of `Rejection' of a given EBL model:
 - Best-fit versus null hypothesis $\underline{b=1}$: i.e. the EBL model predictions are correct
- We tested most of the EBL models: Franceschini08, Kneiske04, Kneiske&Dole10, Gilmore09-12, Dominguez11, Stecker+ etc
- Results (wrt to Franceschini+08 model):

Redshift	Significance	Scaling factor b
z<0.2	~2	1.18(±0.94)
0.2 <z<0.5< td=""><td>~2.7</td><td>0.82(±0.41)</td></z<0.5<>	~2.7	0.82(±0.41)
0.5 <z<1.6< td=""><td>~5</td><td>1.29(±0.42)</td></z<1.6<>	~5	1.29(±0.42)
0 <z<1.6< td=""><td>~6</td><td>1.02(±0.23)</td></z<1.6<>	~6	1.02(±0.23)

- ~6σ detection of the EBL absorption feature
- 2. Data compatible with low-opacity models


Composite Likelihood Results: 2

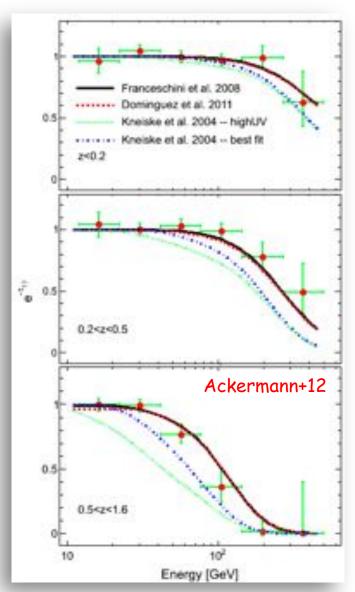
Composite Likelihood Results: 2

- · A significant steepening in the blazars' spectra is detected
- This is consistent with that expected by a 'minimal' EBL:
 - i.e. EBL at the level of galaxy counts
 - 4 models rejected above 3 sigma
- All the non-rejected models yield a significance of detection of $5.6\text{-}5.9~\sigma$
- The level of EBL is 3-4 times lower than our previous UL (Abdo+10, ApJ 723, 1082)

Model ^a	Ref.b	Significance of $b\!=\!0$ Rejection ^c	$b_{\rm d}$	Significance of b=1 Rejection
Stecker et al. (2006) - fast evolution	(23)	4.6	0.10±0.02	17.1
Stecker et al. (2006) - baseline	(23)	4.6	0.12 ± 0.03	15.1
Kneiske et al. (2004) - high UV	(22)	5.1	0.37±0.08	5.9
Kneiske et al. (2004) - best fit	(22)	5.8	0.53±0.12	3.2
Gilmore et al. (2012) - fiducial	(27)	5.6	0.67 ± 0.14	1.9
Primack et al. (2005)	(56)	5.5	0.77±0.15	1.2
Dominguez et al. (2011)	(25)	5.9	1.02±0.23	1.1
Finke et al. (2010) - model C	(24)	5.8	0.86 ± 0.23	1.0
Franceschini et al. (2008)	(7)	5.9	1.02±0.23	0.9
Gilmore et al. (2012) - fixed	(27)	5.8	1.02±0.22	0.7
Kneiske & Dole (2010)	(26)	5.7	0.90±0.19	0.6
Gilmore et al. (2009) - fiducial	(2)	5.8	0.99±0.22	0.6

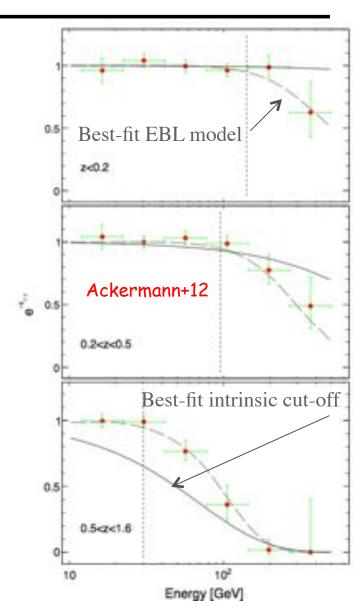
EBL Detection

Significance


Model Rejection

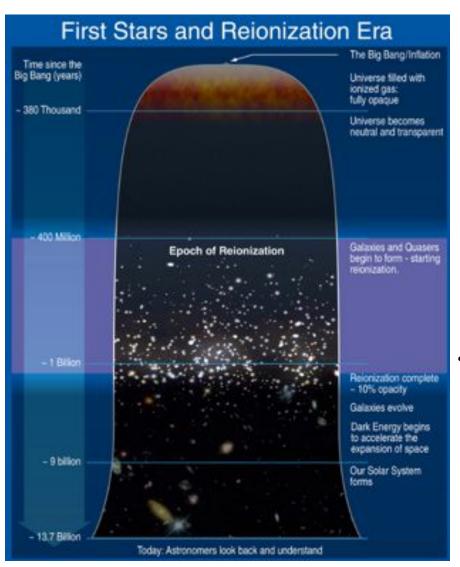
Significance

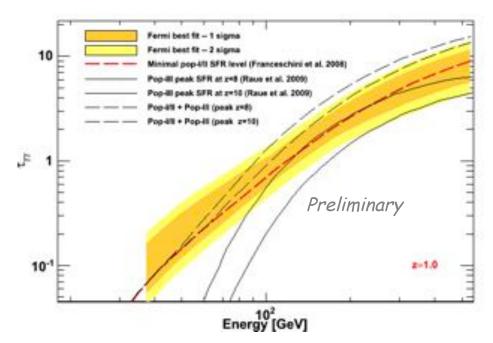
Measurement of Tau with Energy and Redshift


- We use the composite likelihood in small energy bins to measure the collective deviation of the observed spectra from the intrinsic ones
- The cut-off moves in z and Energy exactly as expected for EBL absorption (for low opacity models)

Measurement of Tau with Energy and Redshift

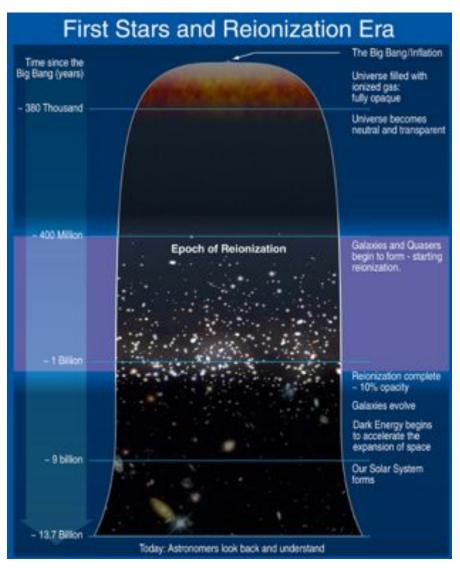
- We use the composite likelihood in small energy bins to measure the collective deviation of the observed spectra from the intrinsic ones
- The cut-off moves in z and energy as expected for EBL absorption (for low opacity models)
- It is difficult to explain this attenuation with an intrinsic property of BL Lacs
 - 1. BL Lacs required to evolve across the z=0.2 barrier
 - 2. Attenuation change with energy and redshift cannot be explained by an intrinsic cut-off that changes from source to source because of redshift and blazar sequence effects

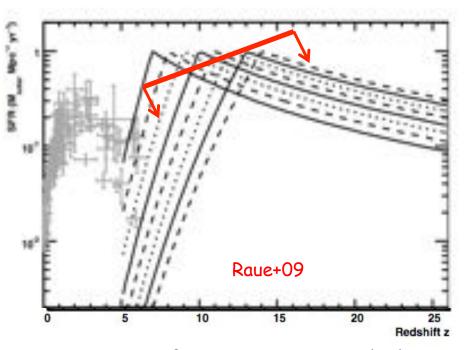

Gamma-ray Space Telescope


Our Tests

- Analysis is fully validated with simulations
- Results are robust against change of IRF/dataset
 - Systematic of ~10% on τ_{vv} from IRF
- Results are confirmed when treating the classes independently:
 - HSPs dominate the signal (TS~25)
 - ISPs contribute a little (TS~10)
 - LSPs too soft
- Results do not depend on highest-z sources
- Results are robust against inclusion/exclusion of most variable sources
- Results are only weakly dependent on the accuracy of redshifts (i.e. if some redshifts are lower limits)
- The residual ~30 BL Lacs contribute a TS~3.5
- Results confirmed when decreasing dramatically E_{crit}

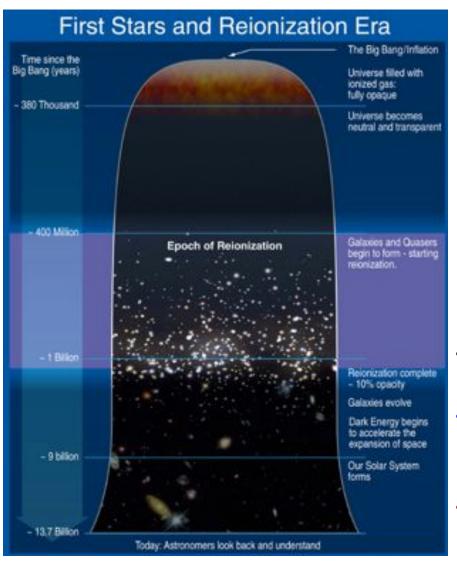
Sensitivity to the light of the First Stars

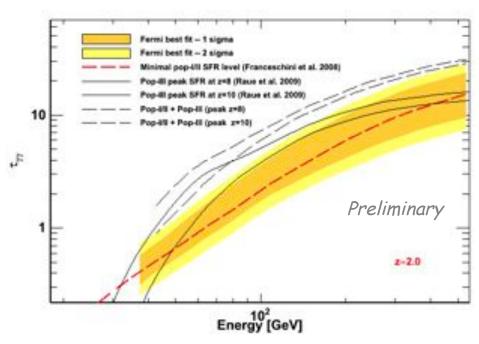




 Large contr. of pop-III stars ruled out by Aharonian+06

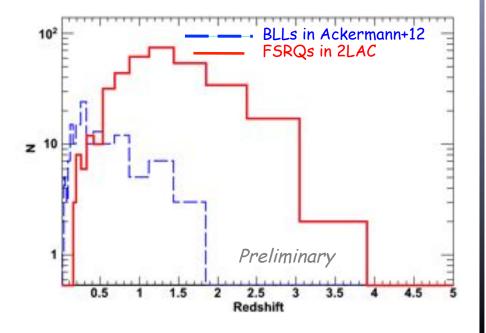
Sensitivity to the light of the First Stars



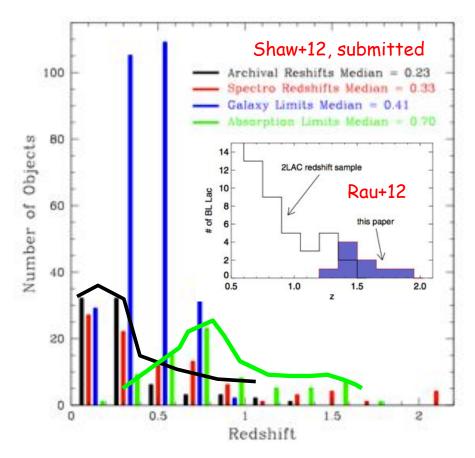


- Large contr. of pop-III stars ruled out by Aharonian+06
- Our measurement constrains the peak SFR of massive stars to be z>10 and have <0.5M_{sun} yr⁻¹ Mpc⁻³

Sensitivity to the light of the First Stars



- Large contr. of pop-III stars ruled out by Aharonian+06
- Our measurement constrains the peak SFR of massive stars to be z>10 and have <0.5M_{sun} yr⁻¹ Mpc⁻³
- If we only had z≥2 objects !!!



Bright Future

• Use FSRQs to derive (at least) an upper limit to $\tau_{\gamma\gamma}$ up to $z\sim3$

 Use the ~200 BL Lacs that now have redshift!

Conclusions

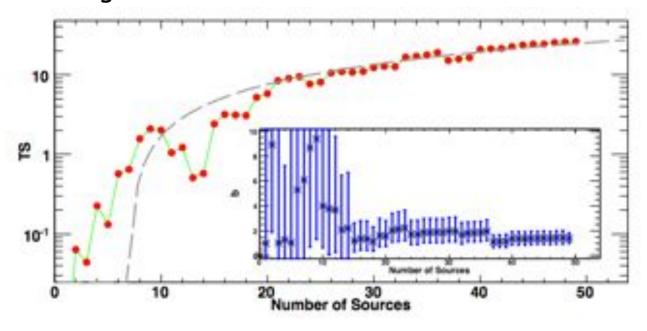
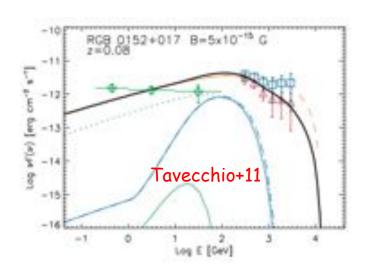
- Fermi performed a measurement of the γ-ray opacity
- The measurement is in good agreement with recent EBL models that predict a minimal EBL based on resolved galaxy counts
- The opacity is a factor >3 smaller than the previous LAT upper limit
- · A LOT more to come, stay tuned
 - EBL measurement at z~0 using GeV-TeV data (Dominguez+12)
 - EBL measurement at z~0 using H.E.S.S data (see poster 3.5 by B. Giebels)

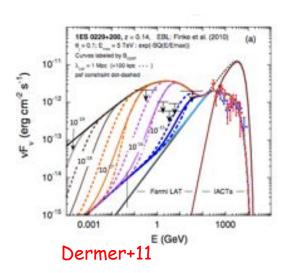
<u>Cosmic Conspiracy Disclaimer</u>: Our result relies on the assumption that there is no 'conspiracy' in the nature of BL Lacs (or HSPs) that brings them to evolve in a way that mimics EBL absorption from z~0 to z~1.6

The End

Linear Increase of the TS

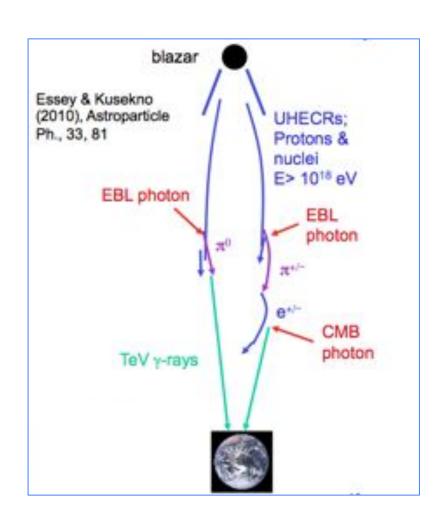
 The signal is distributed over all the sources, with each source contributing ~0.5 to the TS


Figure S3 Increase in the TS value of the (renormalized) EBL model of (7) produced in the joint-likelihood fit (to the $0.5 \le z < 1.6$ interval) while adding one source at a time. The sources have been sorted in redshift (from lowest to highest). The dashed line shows the best-fit linear increase of the TS with the number of sources. The inset shows the best-fit value of the renormalization parameter b applied to the opacity predicted by (7) (see text for details).

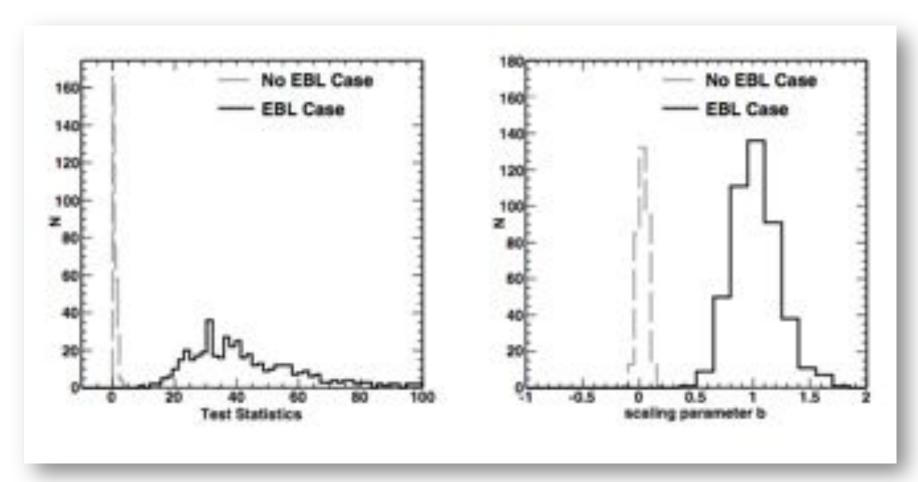
Cascades and IGMF

- Cascade emission of TeV γ rays is reprocessed in the GeV energy range
- It may represent a substantial fraction of the GeV spectrum, depending on:
 - Intensity of the EBL
 - Intensity of the IGMF and its coherent length
 - Position of the high-energy SED peak
- For IGMF of ≥10⁻¹⁵ G (Neronov&Vovk10, Tavecchio11) the cascade component is greatly suppressed
- For IC peaks <10TeV (i.e. all but extreme HSPs) the cascade component is not expected to be large



Ultra High Energy Cosmic Rays

- Blazars might be accelerating CRs as well
- CRs would travel further and interact with the EBL/CMB to generate y rays
- Y-rays would then suffer EBL absorption


 Intense IGMF would deflect cascades out of line-of-sight

Simulations Results

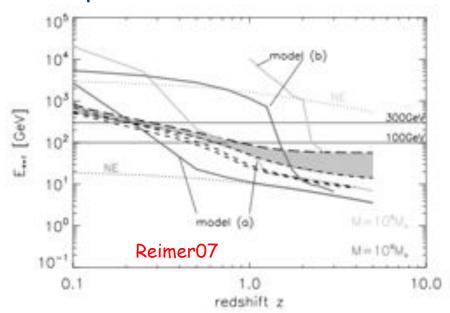
 Analysis validated using Monte Carlo simulations of physical SEDs of blazars based on Fermi observations

Our Approach -- Analysis

• We look for the collective deviation of the spectra of blazars from their intrinsic spectra

Source selection

- We select 'non-variable' BL Lacs from 2LAC solely on the 3-10 GeV detection significance
- Advantages:
 - Hard spectrum sources
 - Weak, if any, external photon fields
- Disadvantages:
 - Only ~50% of Fermi BL Lacs have redshift in 2LAC
 - But see the talk of M. Shaw for the rest!


Analysis details

- 46months of data (till June 1st)
- P7SOURCE_V6 or P7CLEAN_V6
- zenith angle < 100deg
- ROI radius = 15deg
- Standard P7 diffuse models
- Energy range 1 500 GeV

Intrinsic Absorption

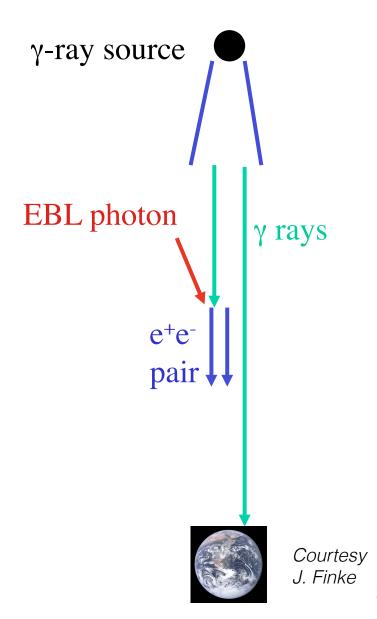
- Absorption of gamma rays on the photons of the BLR/disk might show a redshift dependence due to the accretion history of the Universe (Reimer07)
- Most of the signal is in HSPs
- However:
 - If the emission region is far from the core, then no absorption is expected

Gamma-ray Space Telescope

Source selection

- Delicate problem:
 - Ideally we would like to select a population:
 - · Whose properties do not change with redshift
 - Is not affected by intrinsic absorption of photons on the BLR/disk
 - Have hard spectra to probe the EBL
- Such selection is impossible:
 - Blazar types change with redshift
 - · HSP -> ISP -> LSP
- FSRQs are soft, have intense photon fields, are very variable:
 - No ideal candidates
- We select BL Lacs:
 - Advantages:
 - Have hard spectrum
 - We think they might not have strong photon fields
 - Disadvantages:
 - Type evolves with z
 - 50% in 2LAC do not have z

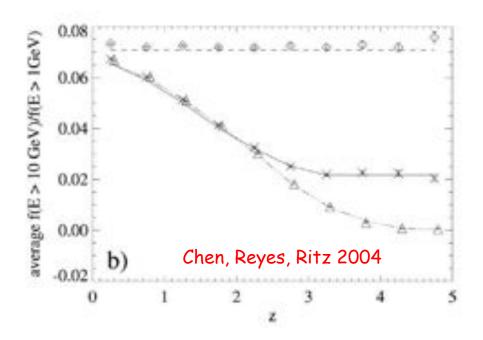
EBL and Gamma Rays

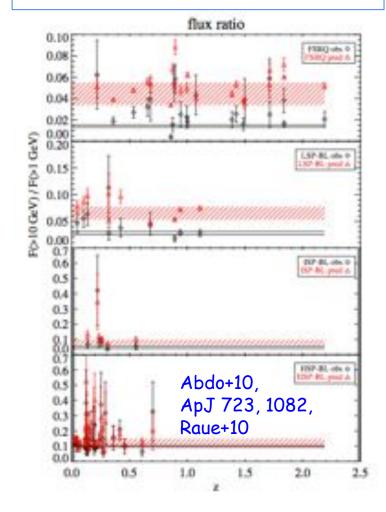

EBL photons extinguish extragalactic gamma rays.

$$\gamma_{\rm ebl} + \gamma_{\gamma - {\rm ray}} \rightarrow e^- + e^+$$

Gamma rays we see are attenuated by:

$$F_{obs} = F_{int} \exp[-\tau_{\gamma\gamma}(E, z)].$$

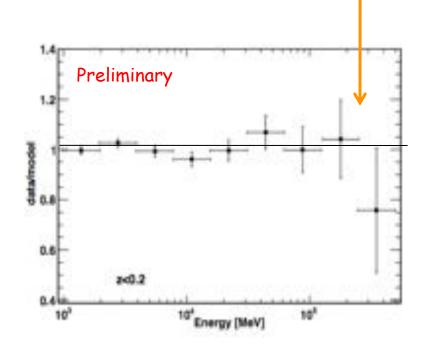

We want to constrain the EBL models [$\tau_{\gamma\gamma}$ (E,z)] based on γ -ray observations of blazars.



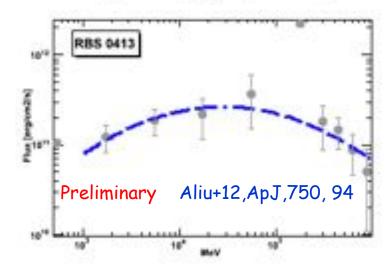
Predictions and Reality

 EBL should cause an energydependent suppression of the HE flux which increases for larger redshifts

Reality is far more complex due to the non-standard nature of blazars



Is the LogParabola good for the intrinsic spec. ?


- Answer: We believe it is good over the chosen energy range
 - 1. For z<0.2, EBL absorption becomes important only for E>150GeV

Evidences

- Fit to GeV TeV: OK
- Residuals to z<0.2 fit: flat

Gamma-ray Space Telescope

Analysis Procedure

- We define 3 redshift bins with 50 members each:
 - z= 0-0.2, 0.2-0.5, 0.5 -1.6
- All BL Lacs are modeled with a LogParabola spectrum
- 3 Steps Procedure:
 - 1. fit each ROI (1-500 GeV) to optimize all components
 - 2. re-fit only up to the energy for which EBL absorption is negligible (we call this $E_{\rm crit}$)
 - 1. This step is needed to determine the properties of the intrinsic spectrum
 - 3. Combine the likelihoods of each ROI (for a z-bin) and fit "b"
- We evaluate 2 cases:

$$F(E)_{absorbed} = F(E)_{\text{int rinsic}} \cdot e^{-b \cdot \tau_{\text{mod }el}}$$

- 1. Null hypothesis b=0: there is no EBL
- 2. Null hypothesis b=1: the model prediction are correct

Our Approach -- Analysis

 We look for the collective deviation of the spectra of blazars from their intrinsic spectra

Source selection

- We select 'non-variable' BL Lacs from 2LAC solely on the 3-10 GeV detection significance
- Advantages:
 - Hard spectrum sources
 - Weak, if any, external photon fields
- Disadvantages:
 - Only ~50% of Fermi BL Lacs have redshift in 2LAC
 - But see the talk of M. Shaw for the rest!

Analysis details

- 46months of data (till June 1st)
- P7SOURCE_V6 or P7CLEAN_V6
- zenith angle < 100deg
- ROI radius = 15deg
- Standard P7 diffuse models
- Energy range 1 500 GeV