

Particle acceleration and non-thermal emission in a nova The 2010 outburst of V407 Cygni

Pierrick MARTIN Guillaume DUBUS

Work submitted to A&A (arXiv:1209.0625)

V407 Cygni: Introduction

The binary system

- White dwarf (WD) + red giant (RG)
- Period ~50yr, separation ~10AU
- Distance 2.7kpc
- Accretion via wind

The March 2010 outburst

- V magnitude jump by 5 on March 10th
- He/N nova expanding in RG wind
- $\bullet~M_{ej}\,{\sim}10^{\text{-}6}~M_{\odot}$ and $V_{ej}\,{\sim}3000\,\text{km.s}^{\text{-}1}$
- First observed in GeV gamma-rays (by Fermi/LAT)
- Follow-up over weeks/months in radio / X-rays / optical / IR

Transient high-energy emission attesting to short-lived episode of particle acceleration ? Scaled-down / fast-forward version of supernova ? Novel test bed for theory on Galactic cosmic rays (GCRs) ?

V407 Cygni: shock dynamics and environment

Shock dynamics

- Ejecta-dominated stage : V_{ei}=constant
- Sedov-Taylor stage : $V_{ej} = (2E_{ej}/M_{su})^{1/2}$
- (Unaccounted: crash into RG and zone behind RG)

Circumstellar density enhancement (CDE) ?

- Accretion from RG wind and orbital motion of WD
- Accumulation of gas in orbital plane and around WD

2D cylindrical geometry

azimuthally-symmetric shock elements

V407 Cygni: The accelerator

Thin-shell approximation

- Acceleration zone and cooling zone
- Particles accumulate behind shock front

Injection

- Scalable fraction of inflowing particles
- Fixed injection momentum over shock front

Acceleration

- Scalable diffusion efficiency w.r.t. Bohm
- Equipartition magnetic field upstream

Losses

- Protons: adiabatic
- Electrons: inverse-Compton
- (others negligible)

Implies power-law distribution with index -2.0 (in the absence of losses)

Advection

Cooling zone

Acceleration zone

Injection

 V_S

Upstream

Monterey / Oct 28 - Nov 2 2012

 V_S/r

Downstream

V407 Cygni: The problem summarized

What do we want to get ?

• γ-ray emission maximum within 4d

- γ-ray emission drop by >10 after 20d
 γ-ray spectrum as observed over 0-15d
- Thermal X-rays in 0.3-10keV ~10³⁴ erg/s over 20-40d

Under what constraints ?

• Non-thermal efficiency ~10%

• e-to-p ratio at injection $K_{ep} = \eta_e / \eta_p < 1 ~(~0.01~?)$

What can we tune ?

- Orbital separation R_{orb}~10-15 AU
- Mass-loss rate M_{dot} ~10⁻⁷ M_{\odot} /yr
- Density enhancement
- Ejecta mass M_{ei} ~10⁻⁶ M_☉
- Injection fractions η_p/η_e , diffusion efficiency ξ

V407 Cygni: non-thermal particles

Typical momentum distributions p²**N(p)**

- Protons age-limited maximum a few 100GeV
- Electrons IC-limited maximum a few 10GeV

Parameters

V407 Cygni: non-thermal particles

Particle spatial distributions

- Proton/electron do not reach maxima over same domain
- Non-thermal energy set by amount of swept-up mass

Parameters

What thermal X-ray constraints imply...

BUT: too much thermal emission !

Reduced proton radiative efficiency Proton injection limited by energy budget Dominantly leptonic emission with K_{ep} > 1% V407 Cygni: Gamma-ray emission

Why a simple wind environment does not fit...

Issue 1: Slow emission rise (would need small orbital separation) Issue 2: Shallow emission drop (robust whatever the parameters) Issue 3: Excessive non-thermal efficiency at late times

4th Fermi Symposium

Parameters

• R_{orb}=10 AU

• M_{ej}=10⁻⁷ M_☉ • V_{ei}=3000 km/s

• ξ=3

• Mdot=10⁻⁷ M_☉/yr

• η_{p}^{5} = 6.10⁻³, η_{e} = 6.10⁻⁴

Large reservoir of particles early on, close to nova photosphere Acceleration drops when shock exits the structure Bohm diffusion in upstream equipartition magnetic field

Conclusions/Perspectives

Non-thermal particles

- p \rightarrow 300GeV, e \rightarrow 20GeV
- e/p at injection 6%
- 10⁴³ erg of particles
- Bohm diffusion in equipartition field

Gamma-ray emission

- Inverse-Compton in nova light if low non-thermal efficiency
- Crucial <100MeV constraints: cosmic-ray-dominated shock ?

About radio constraints

- Synchrotron radiation is absorbed
- Radio signal is free-free emission of UV-ionized wind (Chomiuk-2012)

Importance of combined p+e model

and multi- λ X/ γ /radio constraints

Conclusions/Perspectives

Getting even more interesting...

- Nova Mon 2012 and Nova Sco 2012
- Classical novae
- Nova envelope ejected at 2000-2500km/s
- γ-ray/optical maxima ~contemporaneous
- ~3-5kpc so more luminous than V407 Cyg

Open questions

- Progenitors with low-density environment: mass reservoir for acceleration ?
- Efficient acceleration over days/weeks: magnetic field strength ?
- Massive circumbinary disks ? Shock convergence behind companion ?

Hopefully more to be learned with future Fermi/LAT detections of novae !

Extra slides

V407 Cygni: Anisotropic inverse-Compton

Effect on spectrum and light curve

- Extreme cases of superior and inferior conjunction, edge-on binary
- Isotropic case for comparison

Conclusions

- Nova IC: not much effect (as expected)
- Red giant IC: superior conjunction favours quicker emission rise and decline
- From emission line analysis, we may be close to superior conjunction (WD behind RG)

Monterey / Oct 28 - Nov 2 2012

4th Fermi Symposium