Fermi-LAT Observation of Extended Gamma-ray Emission from the G25.0+0.0 Region γ-rays from a massive star forming region?

> Junichiro Katsuta (Hiroshima Univ.), Yasunobu Uchiyama, Stefan Funk, on behalf of *Fermi*-LAT collaboration 2014/10/22 5th *Fermi* Symposium, Nagoya Univ.

Gamma rays from SFR

Star forming region (SFR)

OB association + [Photons, stellar winds] x [gas]

Massive SFR

 \rightarrow Particle acceleration?

SFR Cygnus X

Fermi LAT & TeV telescopes Extended γ -ray emission from SFR Cygnus X

The cavity probably created by Cygnus OB2

The only case of a firm detection

 \rightarrow More examples are needed!

2

Ackermann+ 2011

G25 region

LAT residual map >3 GeV

Pass7 Rep. data ~ 5 yr

Extended (~1.5°)
2 elliptical disks
(+ 1 point source)

A simulated point source

SEDs of G25A

SEDs of G25B

Sources associated with G25A

G25A1, A2, A3

- Extended sources
- Similar spectral shapes

\rightarrow The same celestial object

PWN/SNR/Molecular clouds?

- A candidate PWN G24.7+0.6 • No X-ray or TeV detection
 - Much smaller than the γ -rays
 - Position off the center
 - \rightarrow Not associated

No other association → Unidentified source

Sources associated with G25B

G25B1

HESS J1837-069

- Spatially coincident
- SEDs are smoothly connected

\rightarrow Association

- The HESS source is a candidate
 PWN
- Photon index ~ 1.5 at the LAT band

 $\rightarrow \mathsf{PWN}$

G25B2 & B3 (= G25B´) → Unidentified source

SFR scenario

Similarities of γ rayproperties

- Extended
- •Hard photon index (2.1-2.2)
- No cutoff or break (up to

~0.5 TeV)

- Spatially-uniform spectral shape
- → Same kind of source?
 The 2nd case of
 a detection from SFRs?

SFR scenario

• γ rays appear to be confined within the bubble.

Modeling for G25A and G25B'

SFR scenario

- Distance: 7.7 kpc
- Target gas density: 20 cm⁻³
- Target photon field:

Star light + dust emission + CMB

Particle distribution

- Power law with an exponential cutoff
- -Hadronic ($K_{ep} = 0.01$) and Leptonic ($K_{ep} = 1$)
- Electrons' $P_{cut} = 100 \text{ TeV } c^{-1} \text{ and } 1 \text{ TeV } c^{-1}$

• $P_{cut} = 1$ TeV c⁻¹ ~ a break due to the synchrotron loss (B = 10 μ G, Time = 0.1 Myr)

Modeling for G25A

Modeling for G25B'

Physical properties

Parameter	Value
Photon index	2.1
Diameter (pc)	~180
L _r (erg s ⁻¹)	2.2 x 10 ³⁶
Wp (erg)	4.3 (20 cm ⁻³ /n) x 10 ⁵⁰
U _p (eV cm ⁻³)	6.1 (20 cm ⁻³ /n)

The particles cannot penetrate the dense shells?

→ Reason for the efficient confinement?

- •LAT detection of extended (~1.5°) γ -ray emissions from the G25.0+0.0 region. Hard spectrum (photon index ~ 2.1) without any significant curvature (up to ~ 0.5 TeV) SFR is the plausible candidate for the detected γ -ray emissions.
- •G25.0+0.0 may be the 2nd case of a detection of γ rays from SFRs.