

Detection of VHE Bridge emission from the Crab pulsar with the MAGIC Telescopes

Takayuki Saito (Kyoto University), R. Zanin, S. Bonnefoy, K. Hritani On behalf of the MAGIC Collaboration

Gamma-ray pulsars

Energy	# of pulsars
Radio	~2000
Fermi, > 100 MeV	~150
Fermi, >25 GeV hint	13
IACTs, > 50 GeV	1+1 (Crab + Vela)

General understanding of GeV emission mechanism

- GeV emission is due to Curvature radiation
- Electrons energy is limited by C.R. cooling.
- Spectral Should exhibit an exponential cutoff at GeV range.

New Models for Crab

Magnetospheric Cascade Model
 Pulsar Wind Scattering Model
 (K. Hirotani & MAGIC, Apj 742 43, 2011)
 (F. Aharonian et al. Nature 482, 507, 2012)

- 3) Light Cylinder Gap model (Bednarek MNRAS 424, 2012)
- 4) Current sheet model (Arka and Dubus, A&A 550, 2013)
- 5) Cyclotron instability model (Chkheide et al., ApJ 773, 2013)

In order to test these models:

- Spectral Approach

 -> R. Zanin talk this morning
- Pulse Shape Approach
 -> This talk

At Fermi energies

MAGIC Telescopes

MAGIC Telescopes

- 2 IACTs
- Canary Islands, La palma
- 2200m a.s.l.
- 17m diameter dish
- Energy Threshold ~50 GeV
- Sensitivity 0.6%Crab
 > 300 GeV

2009-2011: 70 h of Crab observation (after quality cuts)

2011-2012: Upgrades of Camera and readout system

2012-2013: 65 h of Crab observation (after quality cuts)

uts) Total 135 hours of Stereo data used. T. Saito, 5th Fermi Symposium 2014/10/22

Bridge Emission above 50 GeV

Comparison with other bands

There is no good explanation for this behavior of ratios.

MAGIC measurements are following the increasing trend above 100 MeV.

Energy Spectrum

^(a) Spectral parameters obtained by fitting a function $F(E) = F_1(E/1\text{GeV})^{-\Gamma_1} \exp(E/E_c)$ to *Fermi*-LAT data between 100 MeV and 300 GeV ^(b) Spectral parameters obtained by fitting a function $F(E) = F_{100}(E/100 \text{GeV})^{-\Gamma_2}$ to MAGIC data between 50 GeV and 400 GeV T. Saito, 5th Fermi Symposium 2014/10/22

and bridge, while no difference

Modification of magnetospheric Cascade Model (K. Hirotani)

Added toroidal component

Modification of wind scattering model (D. Khangulyan et al. 2012)

Summary

- In order to test new models for the Crab pulsar, MAGIC re-observed the Crab pulsar with the upgraded MAGIC telescopes.
- Bridge emission above 50 GeV was discovered with 6.2 σ between very narrow two peaks with 135 hours of data.
- P2/P1 ratio and Bridge/P1 ratio at MAGIC energies follows the trend of the energy dependence of these ratios above 100 MeV.
- Photon index above 50 GeV are similar between P1, P2 and Bridge, though there is a difference below 10 GeV.
- Magnetospheric Cascade model needs to be modified with toroidal magnetic filed component in Outer Gap.
- Wind scattering model needs radially periodic density profile, which could be justified by the current sheet structure.
 I. Sgito, 5th Fermi Symposium 2014/10/22