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The Dawn (i.e., the origin of non-thermal emission in blazar jets):

magnetic reconnection as the accelerator of non-thermal particles

The Sunset (i.e., the fate of TeV photons from distant blazars):

blazar-induced plasma instabilities in the intergalactic medium



The PIC method
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eNo approximations, full plasma physics of ions and electrons
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eTiny length-scales (c/wp) and time-scales (wp ™) need to be resolved: w, =

=>» huge simulations, limited time coverage

* Relativistic 3D e.m. PIC code TRISTAN-MP (Buneman 93, Spitkovsky 05, LS+ 13,14)
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Powerful emission and hard spectra
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(3) extended power-law distributions of
the emitting particles, with hard slope
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Internal dissipation in blazar jets
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Internal Dissipation:

Shocks or Reconnection?

Internal shocks in blazars:

e trans-relativistic (yo~a few)

e magnetized (0>0.01)

* toroidal field around the jet
— field L to the shock normal

Bo
0~90°
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Shocks: no turbulence — No acceleration
0=0.1 6=90° yo=15 e-e* shock
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No “returning” particles — No self-generated turbulence spitkovsky 09,11)

No self-generated turbulence — No particle acceleration

Strongly magnetized (0>10-3) quasi-perp yo>1 shocks are poor particle accelerators:

Bo o is large — particles slide along field lines

0 is large — particles cannot outrun the shock

0 .
unless v>c (“superluminal” shock)

— Fermi acceleration is generally suppressed




Relativistic magnetic reconnection

E=vAB

reconnection
electric field
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Relativistic Reconnection — > 1 VA~ C

Can relativistic reconnection self-consistently produce non-thermal particles?




Dynamics and particle spectrum
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Hierarchical reconnection
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e Reconnection is a hierarchical process of island formation and merging (e.g., Uzdensky 10).

* The field energy is transferred to the particles at the X-points, in between the magnetic islands.
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2D o=10 with no guide field w,t=45

* The current sheet breaks into a series of secondary islands (e.g., Loureiro+ 07, Bhattacharjee+
09, Uzdensky+ 10, Huang & Bhattacharjee 12, Takamoto 13).

» The field energy is transferred to the particles at the X-points, in between the magnetic islands.

* L ocalized regions exist at the X-points where E>B.




Inflows and outflows
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e Inflow into the X-line is non-relativistic, at vin ~ 0.1 ¢ (Lyutikov & Uzdensky 03, Lyubarsky 05)
o
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* Outflow from the X-points is ultra-relativistic, reaching the Alfven speed V4 = C \/




The particle energy spectrum
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...... e in the current sheet approaches a

.............. power law dn/dyey-? of slope p~2.

e The normalization increases, as
more and more particles enter the
current sheet.

* The mean particle energy in the

current sheet reaches ~o/4

— rough energy equipartition

e The max energy grows as ymaxot
(compare to ymax*t"? in shocks).
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10 reconnection with no guide field

X |
6"&* e
200

2.5 z, [c/w ]
- 15 300 P

. 0.5 Densnty (LS & Spitkovsky 14)

e In 3D, the in-plane tearing mode and the out-of-plane drift-kink mode coexist.
e The drift-kink mode is the fastest to grow, but the physics at late times is governed by
the tearing mode, as in 2D.




3D particle spectrum
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....... | e At late times, the particle

spectrum approaches a power-
law tail of slope p~2, extending
in time to higher and higher
energies. The same as in 2D.

 The maximum energy grows
as Ymaxt. The inflow speed /

reconnection rate is v, /c~ 0.02
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c=10 & t=720
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Two acceleration phases: (1) at the X-point; (2) in between merging islands




(1) Acceleration at X-points
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* |n cold plasmas, the particles are tied to field lines and they go through X-points.

e The particles are accelerated by the reconnection electric field at the X-points, and
then advected into the nearest magnetic island.

* The energy gain can vary, depending on where the particles interact with the sheet.




Implications for blazar emission




(1) Relativistic reconnection is efficient
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Blazar phenomenology: Relativistic reconnection:
* blazars are efficient emitters it transfers up to ~ 50% of flow energy

(radiated power ~ 10% of jet power) (electron-positron plasmas) or up to ~ 25%
(electron-proton) to the emitting particles




(2) Equipartition of particles and fields
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Blazar phenomenology: Relativistic reconnection:
e rough energy equipartition between In the magnetic islands, i.t nat.u.rally
emitting particles and magnetic field results in rough energy equipartition

between particles and magnetic field



(3) Extended non-thermal distributions
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Blazar phenomenology: Relativistic reconnection:
it produces extended non-thermal

e extended power-law distributions of , .
e . . tails of accelerated particles, whose
the emitting particles, with hard slope ]
power-law slope is harder than p=2 for
d_n A ’7_p p <2 high magnetizations (0>10)



The sunset of TeV photons
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TeV photons are absorbed in the IGM

I Blazar TeV e-e* pairs multi-GeV
VA > VA

(s >
u I AT > ATA

~100 Mpc "~1OO kpc ’

TeV photons from blazars pair-produce in the IGM by interacting with ~ eV EBL photons.
mean free path is ~100 Mpc

YTV +Yev — €' + €

The beam of electron-positron pairs has:
Lorentz factor y=106-107 and density ratio c.=10-1>-10-18 (wrt the IGM plasma)

These pairs should IC scatter off the CMB, producing ~ GeV photons.
* mean free path is ~ 100 kpc (IC cooling length)



No excess GeV emission from blazars

Every TeV blazar should have a GeV halo of reprocessed light. However, not seen!
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IGM fields or plasma instabilities

Every TeV blazar should have a GeV halo of reprocessed light. However, not seen!
Two possibilities:

1) IGM magnetic fields deflect the streaming pairs
(Neronov & Vovk 10, Tavecchio+ 11, Finke+15)
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2) The pair energy is deposited into the IGM as heat, via collective plasma instabilities
(Broderick, Chang & Pfrommer 12, 13, 14)




Plasma instabilities in the IGM

Interpenetrating beams of charged particles are unstable (beam-plasma instabilities)
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Beam-plasma linear evolution

Linear analysis: If all the beam energy is deposited into

the oblique instability grows 10-100 the IGM via plasma instabilities:

times faster than the IC cooling losses. No reprocessed blazar GeV emission

excluded for collective IGM field estimates are invalid
plasma phenomena : _
IGM heating from blazars will have

iImportant cosmological implications

HI,ﬁHeI—/HeII—reionization
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(Broderick et al. 12)

The non-linear evolution of the beam-plasma system requires PIC simulations.




10% in heat, 90% in GeV emission
Blazar-induced beams: Lorentz factor y=100-107 and density ratio a=10-1>-10-18

Numerically tractable: Lorentz factor y=101-103 and density ratio a=10-1-10-3

IGM heating fraction

(LS & Gianios 14)
COLD (i.e., monoenergetic) beams:

Regardless of the beam y or o, the beam longitudinal momentum dispersion at the
end of the evolution reaches ~ 0.2 v, and the IGM heating fraction reaches ~10%.

— 90% is still available to power the reprocessed GeV emission.



Blazars beams are not cold
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* the pair production cross section
peaks at ~ few mec?.
* the TeV blazar spectrum and the

EBL spectrum are broad. 10® 10* 10° 10® 10" 10°
I (Miniati et al 13)
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The heating fraction will be «10%:

if the initial longitudinal beam
dispersion is already > 0.2 vy, as

IGM heating fraction

expected for blazar beams.

So, nearly all of the energy stays in the beam!




Summary
High-energy emission from blazars:

» The (failed) dawn: internal shocks, if significantly magnetized

6~90°
(0>10-3) and quasi-perpendicular, are poor particle accelerators.
* The (likely) dawn: magnetic reconnection in magnetically-
Bo dominated flows (o»1) is fast and efficient, can produce non-
T 1 thermal populations with a power-law slope p~1+2, and results in

rough energy equipartition between particles and fields.

* The sunset: TeV photons will pair-produce in the IGM. The

resulting beam will deposit «10% of the its energy into the IGM.

Most of the beam energy will result in multi-GeV emission by IC
scattering off the CMB.
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Two acceleration phases: (1) at the X-point; (2) in between merging islands




