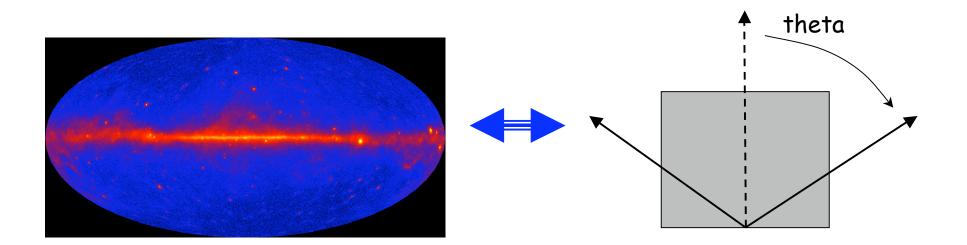


Fermi Gamma-ray Space Telescope

Analysis Workshop 15 November 2010

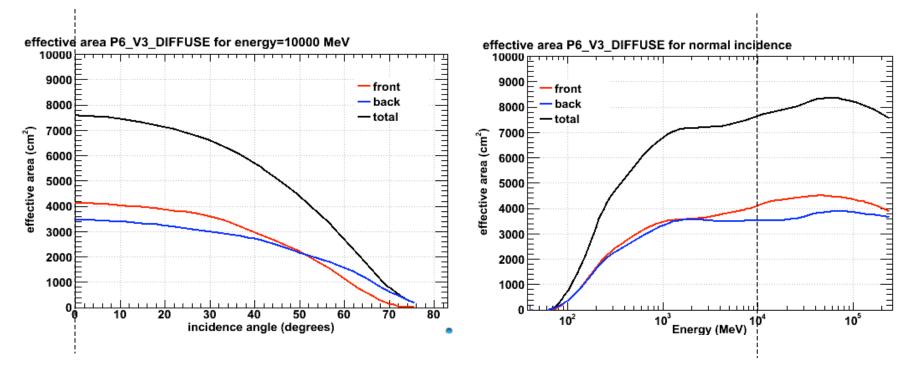
Livetime and Exposure

E. Hays



Handling Livetime and Exposure

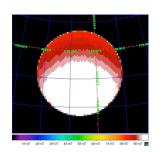
- LAT specifics
 - Calculating exposure is a two-step process
 - Livetime: formally the time when the detector is available to collect data
 - For analysis, additionally require good data quality and select to remove high background
 - Large field of view with varying response: need to know when and where
 - Exposure: for practical purposes, the number that converts counts to photon flux
 - Apply expected photon detection efficiency and angular resolution
 - Depends on event selection
 - Depends on direction of the photon relative to the instrument boresight and energy

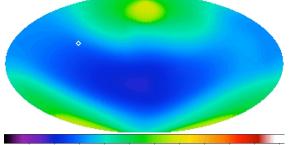

Livetime

- Sum up time spent in the field of view for each position in the celestial sky
 - Inputs are the photon and spacecraft files
 - Options are pixel size and step size for the instrument angles
 - Output is a livetime 'cube'
 - Respects time-based selection cuts made with gtmktime (GTIs)

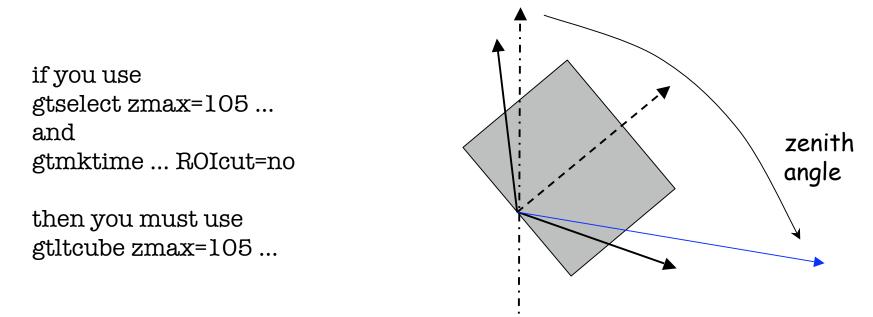
 For a position in the sky fold the time spent in each part of the field of view (from livetime cube) with the detector efficiency for that position

P6_V3 effective area is parameterized in theta and energy




- Response functions are minimally parameterized in the inclination angle (theta) and energy
 - Bin or step sizes used in exposure calculations should consider how quickly the efficiency changes in space or energy
 - At least 10 bins per decade in energy to avoid errors in estimation where the effective area changes rapidly
 - No single, strict recommendation on spatial binning
 - 1 deg default sufficient for making maps
 - Binned likelihood matched to data binning see threads
 - gtexposure invokes a spectral assumption this has a noticeable impact
 - Remember that both the efficiency and angular reconstruction depend on energy

- Each type of analysis has a dedicated method to provide the exposure correction in the appropriate form
 - Aperture lightcurve -> gtexposure xxx cm² s
 - Unbinned likelihood -> gtexpmap
 - Binned likelihood -> gtsrcmaps/gtexpcube
 - All-sky exposure maps -> gtexpcube



1E+08 2E+08 3E+08 4E+08 5E+08 6E+08 7E+08 8E+08 9E+08 1E+09 1.1E-

Gtltcube knows about the field of view and the spacecraft pointing and can make exposure corrections related to those coordinate systems

- If you are doing an all-sky analysis or non-standard zenith cut, the gtltcube can make a correction for exposure loss from a zenith angle cut in gtselect
 - Note this assumes perfect reconstruction
- If you are doing a basic source analysis and using the standard ROIcut in gtmktime, you don't need to do this.

Exposure and Zenith Selection Menu

gtmktime inputs

1	GTI filter=DATA_QUAL==1 && LAT_CONFIG==1 ROI cut=yes Recommended for ToOs and ARRs	ROI cut
2	GTI filter=DATA_QUAL==1 && LAT_CONFIG==1 && ABS(ROCK_ANGLE)<52 ROI cut=no Used in LAT catalog analysis	Rocking angle cut (Requires gtItcube zmax=105)
3	GTI filter=DATA_QUAL==1 && LAT_CONFIG==1 && ABS(ROCK_ANGLE)<52 angsep(RoIRa, RoIDec, RA_ZENITH, DEC_ZENITH) +ROI_radius<105) ROI cut=no Least recommended	Rocking angle cut or ROI cut (Requires gtltcube zmax=105)
4	GTI filter=DATA_QUAL==1 && LAT_CONFIG==1 && ABS(ROCK_ANGLE)<52 ROI cut=yes	Rocking angle cut and ROI cut
	Mast concernative and most commonly used	

Most conservative and most commonly used