Radiative Processes

All e.m. radiation

arises from transition AE
between levels with NNV \NVNY— v = —
difference in electric h

or magnetic moment

- Levels could be discrete or in continuum
- Between each pair of levels emisson and absorption
- Transitions dipole / higher multipole

Transition probability oc | { f | exp(ilzf) [TV i) |5
[ dipole approximation exp(ilzf) = 1]

9By =g1B1a ;. Ay =2By/c?



Continuum Radiation

( d)2 e 72 Classically any accelerated

3C3 3C3 charge would radiate

Different physical situations involve different mechanisms of acceleration
- Radiation mechanism classified according to source of acceleration
- Radiation reaction slows the charge

Radiation
electron electron
o = r::——_*—:;_\_:;:%:\ N\2 — —
proton magnetic field )
Radiation L-w,‘ :

Bremsstrahlung Synchrotron Radiation



/ Scattering processes
\_)% Non-resonant / resonant
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Inverse Compton Scattering

high-energy
low-energy photon
hoton

electron

Related processes: Compton Scattering
Thomson Scattering



electron

Radiation
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Bremsstrahlung

single encounter

log W

w ~ v/b

Spectrum

Electric field received by the
observer is time dependent

Fourier transform of the
electric field yields the
spectrum

Net observed spectrum
is a sum over all emitting
particles



Polarization
E o o x [(71 — B) x B

At a single particle level, over short times, radiation is always
polarized.

For slowly moving particle (or ﬁ_) nearly || to71 ) polarization
is || to the projected instantaneous acceleration.

Net observed polarization involves average over the

particle’s trajectory, and over the distribution of emitting
particles.
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Motion introduces aberration and relativistic beaming
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Synchrotron spectrum from single emitter
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Radio image of the active galaxy Cygnus A
- Example of a powerful synchrotron source




Curvature Radiation

Relativistic Charged Particles moving along curved field lines

- Shares most properties of Synchrotron Radiation
(replace Larmor radius by the radius of curvature of

field lines)

- Polarization || to the projected field lines
(Synchrotron: polarization perp. to projected B)






/ Scattering processes
\_)% Non-resonant / resonant
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Inverse Compton Scattering

high-energy
low-energy photon
hoton

electron

Related processes: Compton Scattering
Thomson Scattering
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Synchrotron Self Compton

4

Synchrotron power = ;. -8%121]
30T pey-Up
4

Compton power gGTCﬁZ)/z Upn

Leomp o< Lsy : Compton Catastrophe : Brightness Temperature limit ~10'? K



Bulk Comptonization / Compton Drag

Strong radiation beams collimated within 1/
can be produced by Inverse Compton Scattering
by relativistic bulk flow of charged particles

Due to aberration effects, can generate very high
polarization | ———
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Spectra

Radiation received from a source is the sum of emission from a
large population of particles.

Energy distribution of the particles shape the spectra

Thermal distribution Non-thermal distribution

Maxwell-Boltzmann Non-Maxwellian, e.g. power-law
10000 p -
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What is emitted is not what we see
Radiation is modified during propagation through matter

Radiative transfer

dl,,

— = = vlv + .v
ds ¢ J
dl,

=—I,+S,
dt,

S, for a thermal source is the Planck function B,

2hv? 1
¢z exp(hv/kT) -1

B, =



Blackbody function

log intensity

log frequency

At large optical depth a thermal source will emit blackbody intensity.
Emission will be received from a photosphere

Optical depth is frequency-dependent. A source could be optically thick
at some frequencies, optically thin at others.
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X-ray emission (pink) by hot gas in Bullet Cluster
- Primarily Thermal Bremsstrahlung emission




Optically thin
non-thermal Synchrotron
from power-law particle
distribution
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Spectral regimes in Synchrotron Emission

Emission peak of electrons

: at lower limit of E-distribution
Low-frequency talil

of single particle
emission spectrum

-(p-1)/2

-p/2

49 5 Tired

electrons
Low-frequency ,

cutoff: Synchrotron |

Self Absorption I

|
/

Jitter radiation can steepen the low-frequency cutoff:
- Low energy particles have longer duration of E-field pulse per orbit
- More affected by pitch angle scattering before pulse completion

(Medvedev 2000)



GRB Afterglow spectral evolution
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What is emitted is not what we see
Radiation is modified during propagation through matter

Plasma effects

7 \—1/2
Dispersion Yph _ (1 wp]

o —1/2
In magnetic field, (Uih) — 11 @Vp
Faraday Rotation R,L



Transmitted
(optical)

o IR dust

Observer

Dust Extinction, Polarization
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Absorption by the Earth’s Atmosphere

Gamma Ultraviolet Vnsnble light
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Nuclear / particle processes

Change in binding energy = photon emission

- Radioactivity (e.g. Al%®)

- Decay of heavy mesons (e.g.IT° — 2y)
generated in nuclear scattering (p +p — HO)

- Fusion

- Pair Annihilation



Diffuse gamma-ray emission from gal. plane
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Pulsars

Non-accreting magnetized neutron stars - radiating via
magnetospheric processes

Main presence at radio wavelengths (~2000)

A few dozen at higher energies.

Fermi single-handedly increased the number of gamma-ray
pulsars from half a dozen to > 50. (Abdo et al 2009)

Surface Magnetic field ~10%- 103 G
(Cyclotron fundamental ~ |eV - 100 keV)

How do we know the field strength!?
- Rotation-powered pulsars : spindown torque
- Accreting X-ray pulsars : cyclotron features



A NEUTRON STAR: SURFACE and INTERIOR
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Pulsar emission is
a magnetospheric
phenomenon



Crab Nebula




Vacuum Dipole Model

Spinning magnet generates magnetic dipole radiation

Radiated power = i(1/'}'1)2 = iBzR6Q4 sin” o
3¢’ 3¢’

= —1Q0O (Rate of loss of rotational energy)

Yields B? oc PP

Measurement of spindown rate helps estimate B

Biy = \/PSP—15

Age: ~P/P young objects often found in SNRs



Pulsar
P-Pdot
diagram

Coloured
Dots are
gamma-ray
pulsars
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The Pulsar Magnetosphere

Basic concepts: Goldreich & Julian 1969

CRITICAL LINE
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- A vacuum exterior would have
potential drop exceeding 10'°V

- Space charge must exist, EsB=0

- Co-rotating magnetosphere can
be maintained up to the light

cylinder, p = -QB/2Ttc

- With pair production, no. density
of charged particles may far
exceed p

- p passes through 0 and changes
sign in the magnetosphere

Plasma on open field lines cannot co-rotate. Current flows out
along these lines, creates toroidal mag. field which provides the

dipole spin-down torque.

A charge-starved gap is likely on
the null p surface at the boundary
of the closed magnetosphere: The
Outer Gap (Cheng et al 86, Romani 94)




Force-free magnetosphere
(Spitkovsky 2006)

PE+ (jxB)/c=0
everywhere

poor approximation near
LC, current sheets




Radio Pulsar emission phenomenology

- Sharp pulses, low duty cycle : strong beaming
- High Brightness Temp (~10%° K) : coherent emission [Radio only]
- Frequency-dependent pulse width : radius-to-frequency mapping

- Strong linear polarization with S-pattern
position-angle sweep : curvature radiation, rotating vector model

- Strong pulse-to-pulse variation but stable average profile :
stochastic phenomena within a geometric envelope

- Drifting subpulses : rotating carousel of sparks, ExB drift

Complications:
Cone-core dichotomy, Orthogonal polarization modes, Multiple comp.,
Mode changes, Nulling, non-RVM pol sweep, circular pol......



, L & V (

PA (deq)

150

100

50

- 20

- 10

- 10

-10

Longitude (degq.)

- =20

Ramkumar & Deshpande 2001



Single—pulse sequence

Pulse energy

5000

- 100

0

'y

I
00¢

L Ll

T 1
ogl 091

siaquwnp as|nd

L4

T
ovi

10

Deshpande & Rankin 99

Longitude (deq.)



Base intensity Polar Emission Map

100

0
1
|
1

Radial distance (deg.)
o0

Radial distance (deg.) Deshpande & Rankin 99



Inner
galf’4

|

LIGHT CYLINDER\

CRITICAL LINE

Slot

CO-ROTATING | 8P
MAGNETOSPHERE |

YA f




Outer gap modelling of gamma ray
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Placing an “Annular Gap’
at Current Sheets in FF

magnetosphere solution
(Bai and Spitkovsky 2009)



4100

Pulse modelling slot-gap vs outer gap
(Romani & Watters 2010)

r PFF e<0
L TPC R¥YM pos
al=72,64
:: x=201

Pulsar phase | | Pulsar phase

Vela Pulsar Fermi obs (black) and model (red)




Supernova Remnants

- Sites of supernova explosions

- Ejected material interacts with surrounding matter

- Shock heating of swept up gas and ejecta: X-ray emission
continuum and lines characteristic of ejected species

- Shock acceleration of relativistic particles
(electrons and protons)

- Synchrotron emission from electrons : Radio - X-rays
- Inverse Compton and Bremsstrahlung : X -y

- Y-rays also produced by interactions of relativistic
protons with local gas
* secondary pairs
* pion production and decay



Thermodynamic variables across a shock

. . . ) D
V., ~ v, P, P,
shocked medium unshodked medium Shocxed medium JNSNocKed medium
(downstream, (upstream)
) D
i2 M,
V., ~— - Vv
T T. 2 1
I I
1 P
b )
l'd ' i
(a) (b)
Conservation conditions:
Mass P20 = pP101
2 _ 2
momentum Py + pov; = P14+ p103
2 _ 2
energy  0x(up + Py + pv5/2) = vi(ug + P1+ p107/2)

For a strong shock v2 =vi/4; p2=4p
In a relativistic shock n2 = 4l shock NI



Forward shock

\ Unshocked
\ Ejecta

Unshocked
ISM

Shocked
Ejecta

Compact
Object

Reverse
hock

Contact
Discontinuity



Supernova Remnants: Dynamical Phases

Early Coasting Phase (t < a few hundred years)
- small amount of mass sweep-up; constant expansion speed :R o t

Adiabatic Sedov Phase (a few hundred years <t < several thousand years)
- swept up mass causes deceleration; constant total energy : R « t?”

Radiative Phase (t > a few thousand years)
- radiative energy loss significant; expansion slows rapidly : R « t!/4

Stall (t > a few hundred thousand years)
- expansion speed reaches interstellar sound speed; SNR dissipates



Magnetic Field is amplified behind the shock

- Swept up matter ~4 times denser; frozen-in field increases by
this factor

- Contact discontinuity prone to Rayleigh-Taylor instability:
drives turbulence and hence turbulent dynamo (Gui 1975)

- In very high speed (relativistic) shocks two-stream Weibel
instability can efficiently generate magnetic field (Medvedev & Loeb 99)



Diffusive Shock Acceleration

Magnetic scattering of fast particles on both sides of shock
- Multiple crossings; energy gain in each cycle of crossing
- Finite escape probability in each crossing

<§> =1 E, =Eo(1+ T])n ; Ny = No(1 - Pesc)n
£ eye N E\™ IN(1 — Pesc)
N (> F) = (—) x =
Ny Eo/’ In(1 + 1)

N(E)dE = KE™dE, p=1+x

Max. energy decided by confinement:
R. > acceleration zone escape. Radiative
losses can also limit the energy acquired.

Any acceleration process in which

- Relative energy gain « time [dE/E « dt] SN shocks would
accelerate all species

of charged particles
Will lead to a power-law energy distribution => Cosmic Rays

- Escape prob. per unit time ~ constant [-dN/N « dt]




Veil Nebula, an old supernova remnant in Cygnus
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Multiwavelength view of the remnant of Tycho Brahe’s supernova

EXPLOSION IN AD 1572

"-'.:' L . i
Palomar Observatory - 200 inch Telescope NRAO - Very Large Array _

Optical Image (Red Light) Radio Image (1370 MHz) X-ray, ROSAT
Optical is faint, Bright radio X-rays primarily
suffers from dust non-thermal from thermal emission
extinction synchrotron by hot shocked gas

emission



Cas A from CXO

Most of this is thermal emission from reverse-shocked ejecta




Cas A heavy element map In
_reverse-shocked eject




Cosmic Ray Production
in Supernova Remnants

(Hr‘f.‘ #+30 ASCA observations of
J the supernova remnant
SN 1006 have revealed
the first strong
obsarvational evidence
for the production of
cosmic rays in the
shock wave of a
supernova remnant.
These results come
from the deteclion of
non-thermal
synchrotron radiation
from two oppositely
located regions in the
rapidly expanding
supernova remnant.
The remainder of the
suparnova remnant, in
conirast, produces
thermal X-ray emission
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Cas A from CXO

Blue rim is non-thermal emission




HESS SNR image at TeV
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W44
imaged
by Fermi
LAT
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Green contours:
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emission in supernova remnants
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