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GLAST grant supports costs of research with

1.

Dr. Armen Atoyan (frequent visitor to NRL; travel to GLAST Symposium)
UHECRs and v from GRBs and blazars, Chandra jets, Sgr A*

Dr.Truong Le (NRL/NRC postdoctoral associate)
Particle acceleration theory

Prof. Govind Menon (Summer Sabbatical Faculty and future vists)
Black-hole research

Prof. Markus Bottcher (grad student support to Ohio U, visit to NRL)
Microquasars

Jeremy Holmes (Summer hire) Cosmic ray propagation in the Galaxy



Plans for Coming Year

GLAST Science Working Groups:
GRBs (ISSS Course, L’Aquila, Italy)
Solar System
Blazars

New hire

Book: “High Energy Radiation from Black Holes:

Y-rays, cosmic rays, and neutrinos”

HESS results

"THE MULTI-MESSENGER APPROACH TO HIGH ENERGY GAMMA -
RAY SOURCES" July 4-7, 2006 - Barcelona, Spain



Statistics of Gamma-Ray Blazars
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Energy Extraction from Rotating Black Holes
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Maxwell’s equation in 3+1 formalism
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Energy Extraction from Rotating Black Holes
Analytic Solutions to the Constraint Equation for a Force-Free

Magnetosphere around a Kerr Black Hole

Govind Menon!23 & Charles D. Dermer?
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Microquasars as Gamma Ray Sources
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Gamma Rays from Jet Sources
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Bread and butter physics



Model for High Mass Microquasars

Observer ( =0)

Fig. 1.— Geometry of the model. The direction of the radio jets defines the x3 axis. The
orbital plane of the binary system is the (xy, xo) plane, defined in such a way that line of
sight towards the obhserver lies in the (x5, r3) plane, where the azimuthal angle ¢ = 0.
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Fig, 2.— Orbital modulation of the expected ~~ absorption trough, assuming a power
spectrum with photon index ap, = 2.5 and a photon production site at z, = 10'
The different curves represent the escaping photon spectrum at various orbital phases, |
dy =0 (lowest curve) to ¢y = 7 (highest curve) in steps of 7/10.

Spectral variations with phase

Phase-dependent y—y Opacity
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Fig. 3.— vy opacity at 250 GeV and 1 TeV as a function of the distance of the photon
production region from the central compact object at phase ¢p = 0. The figure illustrates
that (1) VHE photons produced within a few =10'2 em (i.e., of the order of the orbital
separation of the binary system) would be subject to substantial vy absorption; (2) the
minimum of the absorption trough (maximum of 7., as a function of photon energy) is
shifting towards higher energies for larger distances from the central source.

Opacity vs. location of

gamma-ray production site



Predictions for TeV Telescopes
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Fig. 4— Orbital modulation of the mtegrated photon number flux above energles By =
250 GeV (solid) and Ey = 1 TeV (short-dashed), the ~+ opacity at £ = 250 GeV (dotted)
and £ = 1 TeV (dot-dashed), and the local photon spectral index agy at 500 GeV (long-

dashed). As in Fig. 2,

an underlying power-law of photon index ap, = 2.5 and a photon

production site at z; = 10'? em has been assumed. A periodic flux modulation is expected

to be accompanied by positive spectral-index /fux correlation (spectral softening as the flux

increases) at Ey 2 300 GeV.



Multiwavelength Spectrum of Microquasars
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Multiwavelength Emission from Sgr A*
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Very weak > 100 MeV y-ray emission




Second-order Fermi acceleration

a=0,0=1,q=5/3
N T~

With Peter Becker (GMU) and Truong Le



Galactic Center Black Hole Emission:
Ser A* ADAF + Black-Hole Plerion + Sgr A West, a black-hole remnant
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Predict GLAST detection of quasi- log(E/ .E"*')
stationary Compton and bremsstrahlung Propagation of GeV electrons power Sgr A West

fluxes from pc-scale plerion. EGRET emission from young pulsar



