

Brenda Dingus (Los Alamos National Lab) Special Thanks to Andrew Smith (Univ. of Maryland)

HESS Observations of Galactic Sources

- Most HESS detections in the Galactic Plane are extended sources
- Largest Source is Vela Jr with diameter of 2 degrees
(F. Aharonian et al., Astron. Astrophys. 437 (2005) L7-L10)

Extended Source Sensitivity

ACT's rely on angular resolution for excellent background rejection.

When the source size is large compared to PSF, sensitivity is reduced by a factor of

$$
\sim \sigma_{\text {detector }} / \sigma_{\text {source }}
$$

When the source size is large compared to the FOV, sensitivity is reduced much more.

Milagro TeV Observatory for Extended Sources

- Detect Particles in Extensive Air Showers from Cherenkov light created in $60 \mathrm{~m} \times 80 \mathrm{~m} \times 6 \mathrm{~m}$ pond containing filtered water.
- Reconstruct shower direction to ~ 0.5 degrees from the time different photodetectors are hit.
- 1700 Hz trigger rate mostly due to Extensive Air Showers created by cosmic rays
- Field of view is $\sim 2 \mathrm{sr}$ (± 45 degrees) and the average duty factor is $>90 \%$

Point Source Search - Weighted Analysis

Crab significance
Mrk421 significance
Point in Cygnus Region at

Vicinity of the Crab

Extended Source Search Weighted Analysis

Event Weighting: Bin Size $=5.9^{\circ}$
(Optimal for $\sim 5^{\circ}$ source)
Cygnus Region Significance: 9.10
Post-trials probability: $>7 \sigma$
Cygnus Region is the most luminous source of VHE γ-rays in the northern sky.

Cygnus Region

A Closer Look at the Galactic Plane

-GP diffuse excess clearly visible from $\mathrm{l}=25^{\circ}$ to $\mathrm{I}=90^{\circ}$. -Cygnus Region shows extended excess
$\sim 5^{0}-10^{\circ}$.

- $\mathrm{F}_{\text {Cygnus }} \sim=2 \times \mathrm{F}_{\text {Crab }}$

Galactic Plane Excess:

($-2^{0}<b<2^{\circ}$)
Consider Region I $=20^{\circ}-100^{\circ}$
Weighted Map: 7.5σ
Exclude the Cygnus Region: $1=20^{\circ}$ 750
Weighted Map: $\quad 5.8 \sigma$

Galactic longitude 20-75 excludes Cygnus region

Galactic longitude 20-100 includes Cygnus region

Integral Flux: Milagro \& EGRET

R1 (Gal. Long. 40 to 100 deg)

- Based on 3ys of data, 4.5σ
- Flux(>3.5 TeV)
$=(6.8 \pm 1.5 \pm 2.2) \times 10^{-11} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ sr^{-1}
- Spectral Index to connect with EGRET $=-2.61 \pm 0.03 \pm 0.05$
- With outriggers we can measure the spectrum at TeV energies
- 2 more years of data needed for ± 0.1 on spectral index at TeV energies
R2 (Gal. Long. 140 to 200 deg)
- Flux(>3.5 TeV)
$<4 \times 10^{-11} \mathrm{~cm}^{-2} \mathrm{sec}^{-1} \mathrm{sr}^{-1}$ (99\% c.l.)
- Spectral index to connect with EGRET <-2.66 (99\% c.l.)
- Not yet a crisis but spectrum may be softer in outer Galaxy
- Additional data will tell

Cygnus Region Morphology

-Convolve Cygnus region excess with Milagro PSF(0.750).
-Region shows resolvable structure.

HEGRA detected TeV
Source: TEV J2032_4130.

EGRET Unidentified Sources in the Cygnus Region

$3{ }^{\text {rd }}$ EGRET Catalog sources shown with 95\% position error circle.

		$\Phi>100 \mathrm{MeV} / \mathrm{cm}^{2}-\mathrm{s}$	γ
1	3EG J2016+3657	$(34.7 \pm 5.7) \times 10^{-8}$	2.09
2	3EG J2020+4017	$(123 . \pm 6.7) \times 10^{-8}$	2.08
3	3EG J2021+3716	$(59.1 \pm 6.2) \times 10^{-8}$	1.86
4	3EG J2022+4317	$(24.7 \pm 5.2) \times 10^{-8}$	2.31
5	3EG J2027+3429	$(25.9 \pm 4.7) \times 10^{-8}$	2.28
6	3EG J2033+4118	$(73.0 \pm 6.7) \times 10^{-8}$	1.96
7	3EG J2035+4441	$(29.2 \pm 5.5) \times 10^{-8}$	2.08

Flux of maximum point: 500 mCrab (May be extended)

Hot Spot

Both EGRET sources have hard spectrum of 1.86 and 2.09

Milagro flux is $\sim 1 \sigma$ below extrapolation of combined 2 source EGRET spectrum

Neither EGRET source is variable

Proposed
Counterparts of the 2 EGRET sources
_Blazar 2Jy@ 5GHz (Mukherjee et al. 2000, Halpern et al. 2001)
_Young Pulsar with
Nebula (Roberts et al. 2002)

Total Flux from 3EG J2016+3657 and 3EG J2021+3716

EGRET Data $>1 \mathrm{GeV}$

Smooth EGRET $>1 \mathrm{GeV} \gamma$-rays by EGRET's energy dependent psf

Slice of EGRET Data

- Cut on the Dec. band around Milagro' s bright spot
- 2 point sources or 1 extended source?
- EGRET catalog sources were fit as point sources ONLY
- How close together can GLAST resolve 2 sources of this signal strength?

What's Next? miniHAWC (High Altitude Water Cherenkov)

- Reuse Milagro's 900 PMTs and DAQ system
- Build pond at extreme altitude (Tibet 4300m or Mexico 4200m)
- Incorporate new design
- Optical isolation between PMTs
- Larger PMT spacing (5 m vs 3 m in Milagro)
- Deeper PMT depth (in only one layer)

~\$2-3 M for complete detector construction
~15x sensitivity of Milagro
Crab Nebula at 4σ in 1 day
60 mCrab at 5σ in 1 year on entire sky
NSF proposal to be submitted in 2006 to begin operation in 2008

One Year Survey Sensitivity

The Diffuse Galactic Plane in miniHAWC and HAWC

Use Neutral H map to trace out VHE
 Gamma-Ray flux. Normalize to Milagro observed TeV diffuse Galactic plane.

Summary

- Work this next year includes
_ Milagro Run Manager
_Publication of the Cygnus Region Morphology
_Development of Energy Resolution for Milagro
_Search of Milagro data for GRBs coincident with SWIFT
_ Monte Carlo and Budget preparation for miniHAWC proposal
_GLAST DC2 and calculations of relevant GLAST sensitivities to GRBs and steady

