GLAST and Black Hole Jets

Chuck Dermer

(Naval Research Laboratory)

GSFC Greenbelt, MD January 17, 2007

- 1. GLAST Analysis of High Latitude Sources
- 2. Microquasars/Pulsar Wind Nebulae
- 3. Blazar statistics
- 4. Unresolved/diffuse Extragalactic γ-ray Emission
- 5. Hadronic Signatures in Blazars and GRBs
- 6. Correlation of Fluxes: Joint γγ and photohadronic constraints

GLAST data analysisEGRET analysis: >100 MeV
(background-limited
for weak sources)
$$\phi_{-8} = \phi/10^{-8}$$
 ph(>100 MeV) cm⁻² s⁻¹
(~7x10⁻¹² ergs cm⁻² s⁻¹ for a flat vFv
spectrum with $\alpha_{ph} = 2$)EGRET: $\phi_{-8} = 15$; 2-week pointingEnergy-dependent analysis
techniques depending on source
integral flux levelsEnergy-dependent analysis
techniques depending on source
integral flux levels

0.001

0.1

=

1

E (GeV)

1 hr -

10

Sub-hour scale variability when $\phi_{-8} > 200$

Detection of weak sources depends on spectra

Microquasars and PWNe

w/ Markus Böttcher,S. Gupta (Ohio University)

- Microquasars: X-ray binaries with jets
- LS 5039: Associated with 3EG J1824-1514 (Paredes et al. 2000) – new class of γ-ray sources
- LS 5039: High Mass Black Hole Binary

 $M_{BH} \approx 3.7 M_{o}, D \approx 2.5 \text{ kpc}, P = 3.906 \text{ d},$ (Casares et al. 2005): HESS discovery

• LSI +61 303 (Albert et al. 2006: MAGIC)

Multiwavelength Spectrum of LS 5039

- Companion O7 Star ($L \approx 7 \times 10^{38} \text{ ergs s}^{-1}$)
- Optical stellar radiation is highly absorbed
- Radio emission from jets reaches 10 AU Mean orbital separation $d \approx 2.5 \times 10^{12}$ cm (0.2 AU) Companion Mass ≈ 23 M_o (Casares et al. 2005)
- HESS (> 7σ) Detection of LS 5039 at ≈ 200 GeV 10 TeV
 Consistent with point source (< 50")

Blazar-Type Model for High Mass Microquasars

- Leptonic Jet Model (as in blazars)
- \bullet Predicts stochastic variability of jet $\gamma\text{-ray}$ emission
- Synchrotron radio/optical/X-ray emission (plus thermal/nonthermal accretion disk and thermal stellar radiation)
- \bullet Compton-scattered origin of γ rays
 - Target Photons:
 - Accretion Disk
 - Stellar radiation field

see also Paredes, Bosch-Ramon, and Romero (2006)

y Rays from Microquasars: Production and Attenuation

• Compton Scattering in KN regime for TeV γ rays

- Companion Star Temperature = 39000 K = 3.4 eV

• Orbital Modulation of Compton Scattered radiation

Model Fit to the Multiwavelength Spectrum of LS 5039

Fit assuming that EGRET and HESS data are different between two epochs of measurement

• In accord with variability expected from leptonic model

• Orbital modulation of TeV γ-rays for inner jet;-discovered by HESS and MAGIC for LSI +61 303

• Orbital modulation of GeV γ-rays for inner or extended jet model

• GLAST will quickly test this prediction

• New Model: G. Dubus (2006) PSR B1259-63

Blazar Statistics

Redshift Distribution of EGRET *γ***-Ray Blazars**

Uniform exposure: EGRET all-sky survey Fichtel et al. (1994): 1EG catalog

EGRET blazar sample: 46 FSRQs 14 BL Lac Objects

Size Distribution of EGRET y-Ray Blazars

Statistics of Blazars: Redshift and Size Distribution

Model redshift and size distributions of EGRET blazars

Simplest model: fixed Γ , fixed ℓ'_e (no luminosity evolution), analytic SFH

z distribution analytic

Blazar Cosmology

- 1. Density (or Rate Density) Evolution
- 2. Luminosity Evolution

Blazar Formation History (BFH)

Constant Comoving Rate

Star Formation Rate (SFR)

IR,8 (Sanders 2004)

SFH BL

Size Distribution of Model FSRQ

Redshift and Size Distributions of BL Lac Objects

Require negative density evolution (fewer BL Lacs at early times)

Positive luminosity evolution (brighter at early time)

Model Redshift Distribution of EGRET γ-Ray Blazars

Predicted Number of Blazars with GLAST

1000 FSRQ 10 N(>L) BL **GLAST** reaches sensitivity of 100 0.4x10⁻⁸ ph(>100 10⁶ 10⁷ 10⁸ 10⁹ 10¹⁰ 10¹¹ N (> φ__8) L (10⁴⁰ ergs s⁻¹) MeV)/cm² s in one **FSRQ** year 10 BL ~700 FSRQs GLAST: EGRET: and ~150 BLs 1 scanning mode pointing mode by end of first (two weeks) (one year) year of operation 0.1 0.1 10 100 1000 $\phi_{R} [10^{-8} (\text{ph} > 100 \text{ MeV}) \text{ cm}^{-2} \text{ s}^{-1}]$

Blazar Main Sequence

Evidence for unknown high-energy (>> 1 GeV) sources or components

Other Evidence for High Energy γ-Ray Components in Blazars

Pictor A

d ~ 200 Mpc l_{jet} ~ 1 Mpc ($l_{proj} = 240$ kpc) Deposition of energy through ultra-high energy neutral beams (Atoyan and CD 2003)

Guaranteed Strong Photohadronic Losses

Table of Requirements for Photopion Losses

TABLE I: Doppler factor $\delta_{\phi\pi}$ for guaranteed photopion losses, γ -ray photon energy $E_{\gamma}^{\gamma\gamma}$ for $\gamma\gamma$ attenuation with photons at the peak of the target photon SED, and cosmic ray energy $E_p^{\phi\pi}$ for photopion interactions with peak target photons (sources at z = 2 except for XBL, at $z \approx 0.08$, $d_L = 10^{27}$ cm).

	l	η	au	j	$\delta_{\phi\pi}$	$E_{\gamma}^{\gamma\gamma}({ m GeV})$	$E_p^{\phi\pi}(\mathrm{eV})$
FSRQ	28.7	-11	5	-5 (5 eV)	9	92	$5 imes 10^{17}$
IR/optical				-6 (0.5 eV)	16	$30 imes10^3$	$1.6 imes10^{19}$
FSRQ	28.7	-11	5	-2 (5 keV)	1.6	0.03	$1.6 imes10^{13}$
X-ray				-3 (0.5 keV)	2.8	0.92	$5 imes 10^{14}$
XBL	27	-10	3	-2 (5 keV)	1.3	0.14	$3 imes 10^{13}$
X-ray				-3 (0.5 keV)	2.3	4.7	$9 imes 10^{14}$
GRB	28.7	-6	0	$0~(511~{\rm keV})$	160	2.9	$2 imes 10^{15}$
γ ray				-1 (51 keV)	280	92	$5 imes 10^{16}$
X—ray flare		-9	2	-3 (0.5 keV)	50	290	$1.6 imes10^{17}$

Table of Requirements for Photopion Losses

TABLE I: Doppler factor $\delta_{\phi\pi}$ for guaranteed photopion losses, γ -ray photon energy $E_{\gamma}^{\gamma\gamma}$ for $\gamma\gamma$ attenuation with photons at the peak of the target photon SED, and cosmic ray energy $E_p^{\phi\pi}$ for photopion interactions with peak target photons (sources at z = 2 except for XBL, at $z \approx 0.08$, $d_L = 10^{27}$ cm).

	l	η	au	j	$\delta_{\phi\pi}$	$E_{\gamma}^{\gamma\gamma}({ m GeV})$	$E_p^{\phi\pi}(\mathrm{eV})$
FSRQ	28.7	-11	5	-5 (5 eV)	9	92	$5 imes 10^{17}$
IR/optical				-6 (0.5 eV)	16	$30 imes10^3$	$1.6 imes10^{19}$
FSRQ	28.7	-11	5	-2 (5 keV)	1.6	0.03	$1.6 imes10^{13}$
X-ray				-3 (0.5 keV)	2.8	0.92	$5 imes 10^{14}$
XBL	27	-10	3	-2 (5 keV)	1.3	0.14	$3 imes 10^{13}$
X-ray				-3 (0.5 keV)	2.3	4.7	$9 imes 10^{14}$
GRB	28.7	-6	0	$0~(511~{\rm keV})$	160	2.9	$2 imes 10^{15}$
γ ray				-1 (51 keV)	280	92	$5 imes 10^{16}$
X—ray flare		-9	2	-3 (0.5 keV)	50	290	$1.6 imes 10^{17}$
2							

Correlation of Photon and Neutrino Fluxes

TABLE I: Doppler factor $\delta_{\phi\pi}$ for guaranteed photopion losses, γ -ray photon energy $E_{\gamma}^{\gamma\gamma}$ for $\gamma\gamma$ attenuation with photons at the peak of the target photon SED, and cosmic ray energy $E_p^{\phi\pi}$ for photopion interactions with peak target photons (sources at z = 2 except for XBL, at $z \approx 0.08$, $d_L = 10^{27}$ cm).

	l	η	au	j	$\delta_{\phi\pi}$	$E_{\gamma}^{\gamma\gamma}({ m GeV})$	$E_p^{\phi\pi}(\mathrm{eV})$
FSRQ	28.7	-11	5	-5 (5 eV)	9	92	$5 imes 10^{17}$
IR/optical				-6 (0.5 eV)	16	$30 imes10^3$	$1.6 imes10^{19}$
FSRQ	28.7	-11	5	-2 (5 keV)	1.6	0.03	$1.6 imes10^{13}$
X-ray				-3 (0.5 keV)	2.8	0.92	$5 imes 10^{14}$
XBL	27	-10	3	-2 (5 keV)	1.3	0.14	$3 imes 10^{13}$
X-ray				-3 (0.5 keV)	2.3	4.7	$9 imes 10^{14}$
GRB	28.7	-6	0	$0~(511~{ m keV})$	160	2.9	$2 imes 10^{15}$
$\gamma { m ray}$				$\textbf{-1}~(51~\mathrm{keV})$	280	92	$5 imes 10^{16}$
X—ray flare		-9	2	-3 (0.5 keV)	50	290	$1.6 imes10^{17}$

Correlation of Fluxes for GRBs

Neutrino Detection from GRBs with Large Baryon-Loading

Nonthermal Baryon Loading Factor $f_b = 20$

Summary

- GLAST will test microquasar models
- GLAST predictions of number and evolution of blazars
- Do hard blazar emission components, or new population of γray sources, make "diffuse" extragalactic γ-ray background?
- Photohadronic cascades make ultra-high energy γ-ray emission component (without lower energy emission) from FSRQs, not BL Lac objects
- GLAST can detect anomalous γ-ray emission signatures associated with hadronic acceleration in blazar of GRB jets
- Implication for black-hole demographics, cosmic-ray origin

Neutrinos: expected fluences/numbers

Expected numbers of v_{μ} for *IceCube* - scale detectors, *per flare*: <u>3C 279</u>: $N_{\nu} = 0.35$ for $\delta = 6$ (solid curve) and $N_{\nu} = 0.18$ for $\delta = 10$ (dashed) <u>Mkn501</u>: $N_{\nu} = 1.2 \ 10^{-5}$ for $\delta = 10$ (solid) and $N_{\nu} = 10^{-5}$ for $\delta = 25$ (dashed) (*persistent*') γ -level of 3C279 ~ 0.1 F_{γ} (*flare*), (+ external UV for $p\gamma$) $\Rightarrow N_{\nu} \sim$ few- several per year can be expected from poweful HE γ blazars. *N.B.*: all neutrinos are expected at E>> 10 TeV

Detection of one v implies large energy in neutrals

Predicted Number of Blazars with GLAST

• Peak flux size distribution of EGRET blazars for twoweek pointings during the all-sky survey

Dotted curves: Mücke and Pohl (2000)

see Dermer (2006), ApJ, submitted (see astro-ph) for blazar statistics

3C 454.3

Mrk 421

Macomb et al. 1995

Model FSRQ Parameter Study

Model redshift distributions of EGRET FSRQ blazars

Vary bulk Lorentz factor Γ , comoving directional luminosity l'_{ρ} (ergs $s^{-1} sr^{-1}$) One parameter family of solutions + SFH: find simplest model that fits (compare approach of Mücke and Pohl 2000)