# The Large Area Telescope

## Peter F. Michelson Stanford University on behalf of the GLAST LAT Collaboration

GLAST Symposium, Stanford University, February 5-8, 2007



# Outline

□ The Large Area Telescope (LAT): a pair conversion telescope

□ LAT performance

□ Subsystems

□ tracker

**Calorimeter** 

□ anticoincidence detector (ACD)

□ trigger and data acquisition system

□ LAT simulation & testing

□ analysis software development



# **GLAST LAT Collaboration**

### **United States**

- California State University at Sonoma
- University of California at Santa Cruz Santa Cruz Institute of Particle Physics
- Goddard Space Flight Center Laboratory for High Energy Astrophysics
- Naval Research Laboratory
- Ohio State University
- Stanford University HEPL, KIPAC, and SLAC)
- Texas A&M University Kingsville
- University of Washington

### **France**

- CEA/Saclay
- IN2P3

### <u>Italy</u>

- ASI
- INFNINAF

### Japan GLAST Collaboration

- Hiroshima University
- Institute for Space and Astronautical Science
- RIKEN

### Swedish GLAST Consortium

- Royal Institute of Technology (KTH)
- Stockholm University

Cooperation between NASA and DOE, with key contributions from France, Italy, Japan, and Sweden

LAT instrument construction managed by the Stanford Linear Accelerator Center



# Remembering two early sources of inspiration and support



Herbert Gursky (NRL)



Pief Panofsky, Joe Ballam, Bob Watt, and Luis Alvarez (top to bottom) stand on the remodeled 72-inch (increased to 82-inch) bubble chamber after its transfer from Lawrence Radiation Laboratory to SLAC in 1967



## **Components of the LAT**

- Precision Si-strip Tracker (TKR) 18 XY tracking planes with tungsten foil converters. Single-sided silicon strip detectors (228 µm pitch, 900k strips) Measures the photon direction; gamma ID.
- Hodoscopic Csl Calorimeter(CAL) Array of 1536 Csl(Tl) crystals in 8 layers. Measures the photon energy; image the shower.
- Segmented Anticoincidence Detector (ACD) 89 plastic scintillator tiles. Rejects background of charged cosmic rays; segmentation mitigates self-veto effects at high energy.
- Electronics System Includes flexible, robust hardware trigger and software filters.



The systems work together to identify and measure the flux of cosmic gamma rays with energy ~20 MeV → ~300 GeV.



## the real LAT





## Key (Level 2) Science Performance Requirements Summary

| Parameter                                    | SRD Value                                            | Current Best Estimate             |
|----------------------------------------------|------------------------------------------------------|-----------------------------------|
| Peak Effective Area (in range 1-10 GeV)      | >8000 cm <sup>2</sup>                                | ~ 9000 cm <sup>2</sup>            |
| Energy Resolution 100 MeV on-axis            | <10%                                                 | ~ 10%                             |
| Energy Resolution 10 GeV on-axis             | <10%                                                 | < 6%                              |
| Energy Resolution 10-300 GeV on-axis         | <20%                                                 | < 8%                              |
| Energy Resolution 10-300 GeV off-axis (>60°) | <6%                                                  | ~ 5%                              |
| PSF 68% 100 MeV on-axis                      | <3.5°                                                | < 3.2°                            |
| PSF 68% 10 GeV on-axis                       | <0.15°                                               | <.1                               |
| PSF 95/68 ratio                              | <3                                                   | < 3                               |
| PSF 55% normal ratio                         | <1.7                                                 | < 1.5                             |
| Field of View                                | >2sr                                                 | > 2 sr                            |
| Background rejection (E>100 MeV)             | <10% diffuse                                         | <10% (after residual subtraction) |
| Point Source Sensitivity(>100MeV)            | <6x10 <sup>-9</sup> cm <sup>-2</sup> s <sup>-1</sup> | < 4 x 10 <sup>-9</sup>            |
| Source Location Determination                | <0.5 arcmin                                          | < 0.4 arcmin                      |
| GRB localization                             | <10 arcmin                                           | < 5 arcmin                        |
| Instrument Time Accuracy                     | <10 μsec                                             | << 10 μsec (current 1σ = .7μs)    |
| Dead Time                                    | <100 µsec/evt                                        | 26.5 μsec/event nominal           |
| GRB notification time to spacecraft          | <5 seconds                                           |                                   |



## LAT performance summary



LAT performance plots available at www-glast.slac.stanford.edu/software/IS/glast\_lat\_performance.htm

or google "LAT performance"



team effort involving physicists and engineers from the United States (UCSC & SLAC), Italy (INFN & ASI), and Japan









team effort involving physicists and engineers from the United States (NRL), France (IN2P3 & CEA), and Sweden







18 modules







## First Flight Tower in I&T





## **First Integrated Tower – Muon Candidate Event**





## First integrated tower: Gamma-ray pair conversion





## LAT Flight Hardware Integration at SLAC



Preparation of flight grid for TCS integration



LAT Integration stand with PAP ready for proof test



Flight Tracker in Cleanroom



Flight Calorimeter



## **LAT Anti-Coincidence Detector**

team effort involving physicists and engineers from Goddard Space Flight Center, SLAC, and Fermi Lab



ACD before installation of Micrometeoroid Shield ACD with Micrometeoroid Shield and Multi-Layer Insulation (but without Germanium Kapton outer layer)



## LAT complete



# assembly and environmental testing complete: September 2006







# LAT Data Acquisition System Testbed





ID: 135004857-5

3692.307861 mm



# **Components of Simulation & Analysis**





# **GLAST LAT Simulation**

- Geometry Detail > 500k Volumes Includes Tracker Electronics Boards Mounting Holes in ACD Tiles! Spacecraft details and much, much more
- Geant 4 Interaction Physics QED: based on original EGS code) Hadronic: based Geisha (can use FLUKA as well as others)

#### Propagation

Full treatment of multiple scattering Surface-to-surface ray tracing.

Connection to detector Response Energy deposits in Active Volumes Parametric Detector response based on energy and location

### High energy $\boldsymbol{\gamma}$ interacts in LAT





## **The GLAST-LAT Calibration Unit**





## The CERN campaign



- 4 weeks at PS/T9 area (26/7-23/8)
  - Gammas @ 0-2.5 GeV
  - Electrons @ 1,5 GeV
  - Positrons @ 1 GeV (through MMS)
  - Protons @ 6,10 GeV (w/ & w/o MMS)
- 11 days at SPS/H4 area (4/9-15/9)
  - Electrons @ 10,20,50,100,200,280 GeV
  - Protons @ 20,100 GeV
  - Pions @ 20 GeV
- Data, data, data...
  - 1700 runs, 94M processed events
  - 330 configurations (particle, energy, angle, impact position)
  - Mass simulation
- A very dedicated team
  - 60 people worked at CERN
  - Whole collaboration represented



## **Tested many configurations..**





## **Comparisons with MC Simulation**

PSF





## **Data Challenges**



Data challenges provide excellent testbeds for science analysis software.

*Full observation, instrument, and data processing simulation.* 

*Team uses data and tools to find the science. "Truth" revealed at the end.* 

- A progression of data challenges.
  - DC1 in 2004: 1 simulated week all-sky survey simulation.
    - find the sources, including GRBs
    - a few physics surprises
  - DC2 in 2006: 55 simulated days all-sky survey.
    - first catalog
    - <u>source variability</u> (AGN flares, pulsars) added. lightcurves and spectral studies. correlations with other wavelengths. add GBM. study detection algorithms. benchmark data processing/volumes.

+ Users Committee beta test of the tools in November



# **DC2 Point Source Catalog**

Catalog analysis pipeline (Saclay) runs a source detection algorithm and then runs likelihood analysis to produce a table of the basic gamma-ray properties of each source.

Released at the beginning of DC2, it provided a starting point for a large fraction of the more detailed source analysis and was a reference for population/source detection type studies.



380 sources



## Systematic studies: SNR



Set of simulations of SNR RXJ 1713.7-3946 each with a different spectral model



 Developing methods to measure spectral features and using systematic simulation studies to evaluate performance





## **Pulsar simulations and analysis**

- Razzano and Harding simulations to illustrate the ability of LAT observations to distinguish between pulsar emission models.
- Develop analysis methods to quantify this.
- Additional simulation improvements
  - Adding models for binary pulsars
  - Including noise and glitches





1 week (left) and 1-month Vela observation and 1 year Vela observation.





## **Pulsar Wind Nebula Studies**

 Simulations of the kookaburra region which contains a pulsar and a pulsar wind nebula, illustrating how phase resolved spectral studies or energy resolved spatial studies can distinguish between the two components







## **Service Challenge**

### 1 year sky simulation



- the movie



## **Launch**: t – 10 months and counting