

Photon Event Maps

- Source Detection
- Transient Detection

Jeff Scargle Space Science Division NASA Ames Research Center

Thanks: Jay Norris, and AISRP

The GLAST Data Stream

4-Dimensional Data Space: position on the sky

time of arrival

energy

{ X_i , Y_i , t_i , E_i ; i = 1, 2, 3, ... N }

Density Estimation + Structure Identification

Many analysis problems can be treated with a two-step procedure:

- Estimate photon density in the data space
- Identify and characterize structures in the density profile

Photon density estimates radiation intensity.

Jeff Scargle

Density Estimation + Structure Identification

Many analysis problems can be treated with a two-step procedure:

- Estimate photon density in the data space
- Identify and characterize structures in the density profile

Example: Source Detection (point or Extended)

Jeff Scargle

Density Estimation + Structure Identification

Many analysis problems can be treated with a two-step procedure:

- Estimate photon density in the data space
- Identify and characterize structures in the density profile

Example: Transient Detection

Jeff Scargle

Density Estimation + Structure Identification

Many analysis problems can be treated with a two-step procedure:

- Estimate photon density in the data space
- Identify and characterize structures in the density profile

Example: Spectrum Analysis

I. Point data must be binned in order to make sense out of them.

II. The bins must be large enough so that each bin has a significantly large sample.

<u>The analysis described here uses no binning:</u> No spatial bins (healpix) No spatial smoothing (such as convolution with a kernel) No sliding templates (such as likelihood test statistic) No time bins No energy bins

Photons on the Sphere

Photons on the Sphere

Photons on the Sphere

Photon positions on sphere \rightarrow convex hull \rightarrow Delaunay triangulation \rightarrow Voronoi tessellation

The First International GLAST Symposium – Astrostatistics Session, February 7, 2007

Apportion Weights to Each Nearby Photon.

Photon Apportionment

Differential: log(PSF Contribution / Voronoi Area)

- No Bins (space, time, energy)
- No Smoothing (space, time, energy)
 (No loss of information due to these approximations. Result not dependent on bin sizes or locations.)
- Fast: O(N)
- Incremental: O(Δ N) (work by Giuseppe Romeo)
- Suitable for quick look/automated science
- No Coordinate Singularities on the Sphere
- Flexible criterion for detection ...

Can evaluate the following at each photon:

- Local Density (1 / Voronoi volume)
- Clustering (connections to adjacent Voronoi cells)
- Difference in Spectrum (transient vs. background)
- Time difference (Voronoi volume vs. average of previous cell volumes nearby on the sky)
- Any other logically expressible criterion

... and incorporate them in the transient detection criterion.