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Why are the Swift and pre-Swift redshift distribution different?

- Different flux thresholds of GRB detectors, e.g.,
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1. Different detector triggering properties 2. Mean intrinsic duration (10 sec) and
f,=10® (107) ergs cm?2 s for Swift (pre-Swift) corrected emitted y-ray energy (4x105' ergs)
. 0.6 Median: 21,25 Vedian 22270 3. GRBs comoving rate density 4. Jet opening angle distribution (6;= 0.05 - 0.7 rads)
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« The number of sources per unit jet opening angle
0.5} SFR2&SFR4:LSFR & USFR from Blain et al. 1999 increases as the opening angle decreases
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In order to fit the pre-Swift and Swift data, the GRB formation rate must rise faster than the SFR
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« The model integral size distribution of GRBs predicted by our best
 We find that the comoving rate density of GRB sources exhibits positive fit model suggests that ~ 340-350 GRBs per year should be detected 10%
evolution to z 2 3 -- 5, inconsistent with the shape of the star formation rate with a BATSE-type detector over the full sky, and ~ 130-150 GRBs I
given from measurements of the blue and UV luminosity density (SFR2 & per year for the BAT instrument. > .
SFR4) g o7 ]
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« The mean intrinsic beaming factor of GRBs is found to range from = 34-42, distribution of the BATSE GRB distribution within the statistical error 10721 g
with the Swift average opening half-angle <6,> ~ 10°, compared to the bars. S
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« The range of the jet opening angle is between 2.8° — 40°, with the values, ~ 0.0625 ph/cm*s, and we can use our model to predict the : Peak Flux £ [ph cm™ 5] '
corrected y-ray mean energy release value of 4x10%" ergs. peak flux size distribution to fit the Swift data. ‘The plots above normalized to the current total number of observed GRBs per
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Estimate of the number of GRBs per year GLAST will see based on measured EGRET/BATSE fluence ratios
« We use the fluence ratio between EGRET (100 MeV - 5 GeV) and BATSE (>20 keV) from 500 T T T T
the 5 bursts detected by EGRET spark chamber (Dingus 1995) and BATSE to determine = S
the typical ratio of fluences in the BATSE/GBM band (>20 keV) and the EGRET/GLAST Thick lines : GRB (> 100 MeV)
band (>100 MeV). Thin lines : GRB (> 1 GeV)
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g o], B Dol ctal. 2007 o aof EGRET spark chamber - Our model predicts that for a fluence ratio p = 5%, there will
S £ b | J be =~ 130 (~ 35) GRBs/yr full-sky from which the GLAST LAT would
S | ixon detect at least 5 photons with energy > 100 MeV (> 1 GeV).
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O O O contribution to the diffusive extragalactic y-ray background.
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