GLAST sensitivity to cosmological Dark Matter
annihilations into y-rays
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Y-rays from Cosmological WIMPs

Pair annihilation of weakly interacting massive particle (WIMP) dark matter
into high energy photons taking place in dark matter halos at all redshifts
might contribute to the extragalactic diffuse gamma-ray radiation. The 2y-
annihilation channel would give rise to a distinct feature in the spectrum, a
line which is distorted by the integration over all cosmological redshifts [1].

The differential flux of gamma-rays from cosmological WIMP annihilations
can be calculated as in [2].

Halo Structures

The question of how dark matter is distributed on small, galactic e 7

and sub-galactic scale is still a matter of debate. However, N-
body simulations show that large structures form by the
successive merging of small substructures, with smaller objects

usually being denser [3].

Since the annihilation rate is proportional to the dark matter
density squared, “clumpiness” of dark matter can significantly
boost the annihilation signal from cosmological WIMPs. The

quantity A2(z) describes the averaged squared over density in

haloes, as a function of redshift.

Also within larger halos there might exist smaller, bound halos
that have survived tidal stripping. These halos are indicated to

have masses all the way down to 10°° Mo [4]. Although not as
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numerous as the primary halos the substructure halos arise in

higher density environments which makes them denser than their

parent halo.
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Calculated fluxes from cosmological WIMPs annihilating into 2y final state and depends on the energy content of the universe gives rise to monochromatic photons with energy E = My,.
continuous spectra, from annihilations into bb-bar, with WIMP masses of 50,100, which changes with redshift. For this we use the
250 GeV. The total cross section for annihilation is <o2bv>= 3-10-2¢ cm?3 s' and results from the WMAP three-year data [12].
the branching into 2y is 103 .
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_— models under-predict the y-ray flux at higher
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galactic diffuse y-ray continuum, using E (MeV)
the GALPROP simulation code. A comparison of the EGRB from Seekumar et al. [7] (red)

and Strong et al. (blue) together with estimates of different
diffuse, extragalactic backgrounds from unresolved point
sources. Diagram taken from Dermer [8].

GLAST sensitivity

Fast detector simulations were done for a generic model of WIMPs annihilating into 2y, giving a line, and -2
into bb-bar, which gives a continuous spectrum, for different WIMP masses ranging from 50 GeV to 250 S 12
GeV. A 2 analysis was performed, assuming that the background consists of unresolved blazars [2], to 2
obtain a sensitivity plot in <gv> vs My. The WIMP signal was computed using two different halo profiles for 7

the normalization: the NFW profile [9] and one from Moore et al. [10] where we also have included the effect

of substructures, assuming that they have three times the concentration parameter of the parent halo. The
concentration parameters, as a function of halo mass, is distributed according to [13]. 102
The result shows that GLAST is sensitive to total annihilation cross-sections of the order 10-26-10-2° cm?3 s,
depending on the exact halo model, for a generic spectral shape consisting of a line and a continuum part.

It should be noted that, would the dominant fraction of dark matter indeed be thermal WIMPs annihilating
according to our simplified model, cosmology would, to first order, constrain the cross-section to be <ov> ~
3-10%% cm? s'. However, there are models and scenarios for dark matter that do allow for larger cross-

sections, see eg. [11].
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One should also note that the extragalactic background spectrum from astrophysical sources is very

uncertain, especially at high energies.
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