Extragalactic Diffuse Emissions

Chuck Dermer

GLAST IDS Naval Research Laboratory

GLAST Symposium Stanford U., West Palo Alto February 8, 2007

- 1. GLAST Analysis of High Latitude Sources
- 2. EGRET blazar model statistics \Rightarrow predictions for GLAST
- 3. Sources of unresolved/diffuse extragalactic γ -ray intensity
- 4. Hadronic Signatures in Blazars and GRBs
- 5. Correlation of Fluxes: joint $\gamma\gamma$ and photohadronic v constraints
- 6. Black hole demography, cosmic ray origin

New LAT Performance Parameters: A_{eff}

New LAT Perform. Parameters: PSF

GLAST data analysis

EGRET analysis: >100 MeV (*background*-limited for weak sources)

 $\phi_{-8} = \phi/10^{-8} \text{ ph}(>100 \text{ MeV}) \text{ cm}^{-2} \text{ s}^{-1}$ (~7x10⁻¹² $\phi_{-8} \text{ ergs cm}^{-2} \text{ s}^{-1}$ for a flat vF_v spectrum with $\alpha_{ph} = 2$)

EGRET: $\phi_{-8} \approx 15$; 2-week pointing—1/24th of the full sky ($\nu F_{\nu}^{\text{thr}} \sim 10^{-10} \text{ ergs cm}^{-2} \text{ s}^{-1}$)

GLAST: $\phi_{-8} \approx 15$ in ~1 day over full sky ($\nu F_{\nu}^{\text{thr}} \sim 10^{-10}$ ergs cm⁻² s⁻¹)

Sub-hour scale variability when $\phi_{-8} > 200$

of $\phi_{-8} > 200$ blazar flares: few per week (Dermer & Dingus 2004)

Bias toward hard spectrum GeV sources at low fluxes: XBLs over FSRQs?

Blazar Statistics

Redshift Distribution of EGRET γ-Ray Blazars

Uniform exposure: EGRET all-sky survey Fichtel et al. (1994): 1EG catalog

EGRET blazar sample: 46 FSRQs 14 BL Lac Objects

thanks to Stan thanks to Stan Davis

Size Distribution of EGRET γ-Ray Blazars

Statistics of Blazars: Redshift and Size Distribution

Model redshift and size distributions of EGRET blazars

Simplest model: fixed Γ , fixed ℓ'_e (no luminosity evolution)

Blazar Formation Rate analytic

Blazar Cosmology

- 1. Comoving Density (or Rate Density) Evolution
- 2. Luminosity Evolution

Blazar Formation History (BFH)

Constant Comoving Rate

Star Formation Rate (SFR)

IR,8 (Sanders 2004)

SFH BL

Size Distribution of Model FSRQ

Redshift and Size Distributions of BL Lac Objects

Require negative density evolution (fewer BL Lacs at early times)

Positive luminosity evolution (brighter at early time)

Blazar Main Sequence

BL Lac objects are late stages of FSRQs: in accord with analysis of EGRET data (1) Blazar main sequence valid? (2) BL Lac BH Masses > FSRQ BH masses?

Model Redshift Distribution of EGRET γ**-Ray Blazars**

Redshift Predictions for GLAST γ-Ray Blazars

Predicted Number of Blazars with GLAST

GLAST reaches sensitivity of 0.4x10⁻⁸ ph(>100 MeV)/cm² s in one year

~700 FSRQ/FR2s and ~150 BL/FR1s by end of first year of operation

see Dermer (2006), ApJ, in press (see astroph) for details

Predicted Number of Blazars with GLAST

Peak flux size distribution of EGRET blazars for two-week pointings during the allsky survey

Dotted curves: Mücke and Pohl (2000)

Stecker (priv. comm., this conference) predicts 8000-10000 GLAST blazars based on Stecker & Salamon (1996) treatment

Blazar Contribution to Unresolved/Diffuse γ-Ray Background

BL Lacs: $\sim 2 - 4\%$ (at 1 GeV)

FSRQs: ~ 10 - 15%

Data: Sreekumar et al. (1998)

Strong, Moskalenko, & Reimer (2000)

GRB Contribution to the Diffuse Extragalactic γ-Ray Background

Truong Le poster

• Ratio of EGRET spark chamber fluence to >20 keV BATSE fluence: (Dingus 1995, Catelli & Dingus 1997)

1. GRB 910503: $\rho = 1.7\%$ 2. GRB 910601: $\rho = 2.8\%$ 3. GRB 930131: $\rho = 15\%$ 4. GRB 940217: $\rho = 0.8-2\%$ 5. GRB 940301: $\rho = 3.4\%$ Average: $<\rho > \approx 5\%$

until $\rho \approx 10$, cf. Casanova Dingus & Zhang (2006)

Other Evidence for High Energy γ -Ray Components in Blazars

Pictor A

d ~ 200 Mpc l_{jet} ~ 1 Mpc ($l_{proj} = 240$ kpc) Deposition of energy through ultra-high energy neutral beams (Atoyan and Dermer 2003)

Blazars as High Energy Hadron Accelerators

Armen Atoyan (UdeM, Concordia)

Guaranteed Strong Photohadronic Losses

Table of Requirements for Photopion Losses

TABLE I: Doppler factor $\delta_{\phi\pi}$ for guaranteed photopion losses, γ -ray photon energy $E_{\gamma}^{\gamma\gamma}$ for $\gamma\gamma$ attenuation with photons at the peak of the target photon SED, and cosmic ray energy $E_p^{\phi\pi}$ for photopion interactions with peak target photons (sources at z = 2 except for XBL, at $z \approx 0.08$, $d_L = 10^{27}$ cm).

	ℓ	η	au	j	$\delta_{\phi\pi}$	$E_{\gamma}^{\gamma\gamma}({ m GeV})$	$E_p^{\phi\pi}(\mathrm{eV})$
FSRQ	28.7	-11	5	-5 (5 eV)	9	92	$5 imes 10^{17}$
IR/optical				-6 (0.5 eV)	16	$30 imes10^3$	$1.6 imes10^{19}$
FSRQ	28.7	-11	5	-2 (5 keV)	1.6	0.03	$1.6 imes10^{13}$
X-ray				-3 (0.5 keV)	2.8	0.92	$5 imes 10^{14}$
XBL	27	-10	3	-2 (5 keV)	1.3	0.14	$3 imes 10^{13}$
X-ray				-3 (0.5 keV)	2.3	4.7	$9 imes 10^{14}$
GRB	28.7	-6	0	$0~(511~{\rm keV})$	160	2.9	$2 imes 10^{15}$
γ ray				-1 (51 keV)	280	92	$5 imes 10^{16}$
X—ray flare		-9	2	$-3~(0.5~{\rm keV})$	50	290	$1.6 imes10^{17}$

Correlation of Fluxes for FSRQs

Table of Requirements for Photopion Losses

TABLE I: Doppler factor $\delta_{\phi\pi}$ for guaranteed photopion losses, γ -ray photon energy $E_{\gamma}^{\gamma\gamma}$ for $\gamma\gamma$ attenuation with photons at the peak of the target photon SED, and cosmic ray energy $E_p^{\phi\pi}$ for photopion interactions with peak target photons (sources at z = 2 except for XBL, at $z \approx 0.08$, $d_L = 10^{27}$ cm).

	l	η	au	j	$\delta_{\phi\pi}$	$E_{\gamma}^{\gamma\gamma}({ m GeV})$	$E_p^{\phi\pi}({\rm eV})$
FSRQ	28.7	-11	5	-5 (5 eV)	9	92	$5 imes 10^{17}$
$\mathrm{IR}/\mathrm{optical}$				-6 (0.5 eV)	16	$30 imes10^3$	$1.6 imes10^{19}$
FSRQ	28.7	-11	5	-2 (5 keV)	1.6	0.03	$1.6 imes10^{13}$
X-ray				-3 (0.5 keV)	2.8	0.92	$5 imes 10^{14}$
XBL	27	-10	3	-2 (5 keV)	1.3	0.14	$3 imes 10^{13}$
X-ray				-3 (0.5 keV)	2.3	4.7	$9 imes 10^{14}$
GRB	28.7	-6	0	$0~(511~{\rm keV})$	160	2.9	$2 imes 10^{15}$
γ ray				$\textbf{-1}~(51~\mathrm{keV})$	280	92	$5 imes 10^{16}$
X—ray flare		-9	2	-3 (0.5 keV)	50	290	$1.6 imes10^{17}$

Correlation of Photon and Neutrino Fluxes

TABLE I: Doppler factor $\delta_{\phi\pi}$ for guaranteed photopion losses, γ -ray photon energy $E_{\gamma}^{\gamma\gamma}$ for $\gamma\gamma$ attenuation with photons at the peak of the target photon SED, and cosmic ray energy $E_p^{\phi\pi}$ for photopion interactions with peak target photons (sources at z = 2 except for XBL, at $z \approx 0.08$, $d_L = 10^{27}$ cm).

	l	η	au	j	$\delta_{\phi\pi}$	$E_{\gamma}^{\gamma\gamma}({ m GeV})$	$E_p^{\phi\pi}(\mathrm{eV})$
FSRQ	28.7	-11	5	-5 (5 eV)	9	92	$5 imes 10^{17}$
$\mathrm{IR}/\mathrm{optical}$				-6 (0.5 eV)	16	$30 imes10^3$	$1.6 imes10^{19}$
\mathbf{FSRQ}	28.7	-11	5	-2 (5 keV)	1.6	0.03	$1.6 imes10^{13}$
X-ray				-3 (0.5 keV)	2.8	0.92	$5 imes 10^{14}$
XBL	27	-10	3	-2 (5 keV)	1.3	0.14	$3 imes 10^{13}$
X-ray				-3 (0.5 keV)	2.3	4.7	$9 imes 10^{14}$
GRB	28.7	-6	0	$0~(511~{\rm keV})$	160	2.9	$2 imes 10^{15}$
γ ray				-1 (51 keV)	280	92	$5 imes 10^{16}$
X—ray flare		-9	2	-3 (0.5 keV)	50	290	$1.6 imes10^{17}$

Correlation of Fluxes for GRBs

Neutrino Detection from GRBs with Large Baryon-Loading

3x10⁻⁴ ergs/cm², (~2/yr) N_v predicted by IceCube:

For a fluence of

 $N_v \approx 1.3, 0.1, 0.016$ for $\delta = 100, 200$, and 300, respectively in collapsar model for $f_{CR} = 20$

Dermer and Atoyan (PRL, 2003)

Swift GRB Light Curves

submitted to ApJ (a-ph/0606320)

Cosmogenic GZK γ-Ray Intensity

Dark Matter

Neutrinos: expected fluences/numbers

Crucial assumption: same energy injected in protons as observed in radiation modulo Doppler factor δ

from internal photons, black& green curves - external component (Atoyan & Dermer 2003).

Expected numbers of v_{μ} for *IceCube* - scale detectors, *per flare*: <u>3C 279</u>: $N_{\nu} = 0.35$ for $\delta = 6$ (solid curve) and $N_{\nu} = 0.18$ for $\delta = 10$ (dashed) <u>Mkn501</u>: $N_{\nu} = 1.2 \ 10^{-5}$ for $\delta = 10$ (solid) and $N_{\nu} = 10^{-5}$ for $\delta = 25$ (dashed) (*persistent'*) γ -level of 3C279 ~ 0.1 F_{γ} (*flare*), (+ external UV for $p\gamma$) $\Rightarrow N_{\nu} \sim$ few- several per year can be expected from poweful HE γ blazars. *N.B.*: all neutrinos are expected at E>> 10 TeV Detection of one ν implies large energy in neutrals

Summary

- GLAST predictions of number and evolution of blazars
- Residual diffuse isotropic γ-ray background: hard blazar emission components? new populations of γ-ray sources?
- Photohadronic cascades make hadronic γ-ray emission component from FSRQs, not BL Lac objects
- GLAST can detect anomalous γ-ray emission signatures associated with hadronic acceleration in blazar or GRB jets
- Diffuse emission from cosmogenic γ-ray, dark matter