MICHIGAN UNIVERS

Discovery of TeV γ-Ray Emission from the Cygnus Region Galactic Planet 1996

Aous Abdo Michigan State University For the Milagro Collaboration, I. Moskalenko, and A. Strong

Outline

- Brief Description of Milagro
 - New Background Rejection Technique
- New results From Milagro Sky Survey
 - Galactic Plane
 - Cygnus Region of the Galaxy
 - Diffuse Galactic γ-Ray Emission

CT C

0 E.L. 0007 Classical IL.

The Milagro TeV γ-ray Detector:

- Water Cherenkov detector Located in Jemez
 Mountains near Los Alamos NM
- > Elevation: 2630 m
- > Central pond: 80m X 60m X 8m (depth) (5000 m²)
 - Air shower layer: 450 PMTs under 1.4 m
 - Muon layer: 273 PMTs under 6 m
- > Outrigger array: 175 4000 L water tanks
 - $\sim 40,000 \text{ m}^2$
- > 2 Steradians field of view
- > 1700 Hz trigger rate
- > > 90 % duty cycle
- > 0.6-0.3 degree PSF

Background Rejection in Milagro Muon Layer Images

Hadronic EAS out number Gamma Ray EAS by 10,000:1

Hadronic Showers

- Contain many more muons than those for gamma ray EAS
- Result in a bright, compact clusters of light in the Muon layer

Gamma Ray Showers

- Gamma EAS illuminate the Muon layeruniformly, with small hits
- A₄ is a new gamma-hadron separation variable that has been developed
 - Apply a cut on A₄ to reject hadrons: A₄ > 3 rejects 99% of Hadrons and keeps 18% of Gammas
 - S/B increases with A_{4} .

Gamma M Proton MC Q-Factor as a function of A, MC Cosmic Rays Data 2.5 ø 1.5 0.5

A₄ Weighting Analysis on the Crab Nebula

Combine A_4 with the weighting Analysis on 2 Years of Data $A_4 > 3.0$ $A_4 > 3.0$

AOUS ABDO

A Closer Look at the Galactic Plane

Galactic Latitude (deg)

Milagro

Cygnus Region Spatial Morphology

- Crosses are EGRET sources
- Contours are Molecular (Dame et al, 2001) and Atomic Hydrogen (Kalberla et al, 2005) 3
- Hydrogen (Kalberla et al, 2005) (Figure 1998)
 TeV/matter correlation good in Galactic latitude

Diffuse Emission from Cygnus Region

- Exclude a region of 3°×3° around MGRO J2019+37 and MGROJ2033+42
 - Diffuse flux (×10⁻¹⁴ TeV⁻¹ cm⁻² s⁻¹) = $8.3 \pm 1.3_{stat} \pm 2.7_{sys} \sim 2 \times Crab$ flux
- Strong & Moskalenko Galprop model
 - Milagro flux ~ 7x conventional model of Galprop
 - Milagro flux ~3x optimized model
- Hard spectrum cosmic ray sources?
- Unresolved point sources?

Milagro

A. A. Abdo *et al.*, arXiv:astroph/0611691 Submitted to ApJ Letters

l(65,85), b (-3,3)

The First OI AOT Commencium F 0 Feb 0007 Chardend Haisensite

MGRO J2019+37

A. A. Abdo et al., arXiv:astro-MGRO J2019+37 New ph/0611691 Submitted to ApJ Letters MGRO J2019+3 **Extended TeV Gamma-ray** source Statistical Sig. 11.3 σ Salactic Latitude (deg) • Coincident with 2 EGRET sources (unidentified) 3EG J2016+3657 3EG J2021+3716 (PWN **MGRO J2019+37** $G75.2+0.1^{19}$) • Flux (×10 ⁻¹⁴TeV⁻¹ cm⁻² s⁻¹) $2.4 \pm 0.4_{\rm stat} \pm 0.7_{\rm sys}$ -100 ~ 500 mCrab Galactic Latitude (deg) Gaussian Width = $0.32^{\circ} \pm 0.12^{\circ}$ Location: $1 = 75.1^{\circ} \pm 0.1^{\circ}_{stat} \pm 0.3^{\circ}_{sys}$ $b = 0.3^{\circ} \pm 0.1^{\circ}_{stat} \pm 0.3^{\circ}_{sys}$

AOUS

Milagro

10

72

74

76

MGRO J2033+42

- Milagro's Latest Discovery: MGRO J2033+42:
 - Statistical Sig. 7.1 σ
 - Coincident with: HEGRA TeV J2032+4130
 EGRET 3EG J2033+4118
 - Flux (×10 ⁻¹⁴TeV⁻¹ cm⁻² s⁻¹)
 1.7 ± 0.4_{stat} ± 0.5_{sys}
 ~ 350 mCrab
 ~ 3× TeV J2032+4130
 - Location:

 $l = 80.4^{\circ} \pm 0.4^{\circ}_{stat} \pm 0.3^{\circ}_{sys}$ b = 1.0° ± 0.3°_{stat} ± 0.3°_{sys}

MGRO J1909+06

- Milagro's Latest Discovery: MGRO J1909+06:
 - Statistical Sig. 8.2 σ
 - Flux (×10 ⁻¹⁴TeV⁻¹ cm⁻² s⁻¹)
 4.1 ± 0.9_{stat} ± 1.2_{sys}
 ~ 850 mCrab
 - Location: $1 = 40.5^{\circ} \pm 0.1^{\circ}_{stat} \pm 0.3^{\circ}_{sys}$ $b = -1.0^{\circ} \pm 0.1^{\circ}_{stat} \pm 0.3^{\circ}_{sys}$

Conclusions

- Milagro has proven its capabilities as a survey instrument for TeV gamma-rays:
 - Discovery of diffuse TeV gamma-ray emission from th Cygnus region of the Galactic plane
 - Discovery of Three TeV gamma-ray sources in the Galactic plane:
 - MGRO J2019+37 at > 10.2 σ post-trials in Cygnus regic
 - MGRO J2033+42 at > 5.2 σ post-trials in Cygnus Regio
 - MGRO J1909+06 at > 6.5 σ post-trials at low declinations

Backup Slides

AOUS ABDO

2007 Milagro Sky Survey At 12 TeV

- \bullet Crab Nebula Statistical Significance ~ 15.2 σ
- Galactic Ridge clearly visible:
- Three New TeV Gamma-Ray Sources:
 - MGRO J2019+37 in Cygnus region
 - MGRO J2033+42 in Cygnus Region
 - MGRO J1909+06 at low declinations
- Diffuse Emission from the Cygnus Region

Additional Plots

MGRO J1909+06

Additional Plots

