Pulsar Questions & GLAST

Alice K. Harding NASA Goddard Space Flight Center

Unresolved questions of pulsar physics

- How and where are particles accelerated in the pulsar magnetosphere?
- What are the high-energy radiation mechanisms?
- Are processes the same for all pulsars?
- Are there γ-ray millisecond pulsars?
- What is the ratio of radio-loud to radio-quiet γ -ray pulsars?
- How can GLAST help to answer them?

How and where are particles accelerated in the pulsar magnetosphere?

SPECTRAL CUTOFFS

Possible sites of particle acceleration

Which pulsars have slot gaps?

Which pulsars have outer gaps?

Slot gap and outer gap geometry

Dyks & Rudak 2003 Dyks, Harding & Rudak 2004

Measuring spectral cutoffs

What are the high-energy radiation mechanisms?

- MULTIPLE SPECTRAL COMPONENTS
- PHASE-RESOLVED SPECTRA

Polar cap cascades

Outer Gap Models – Pair Cascades

Crab-like

Vela-like ($P < P_c = 0.13 s$)

Cheng, Ho & Ruderman (1986) Cheng (1994) Zhang & Cheng (1997)

Romani (1996), Hirotani (1999...), Cheng, Ruderman & Zhang (2000)

Crab pulsar – multiple emission components?

Distinguishing emission processes and models - Phase-resolved spectra

Are processes the same for all pulsars?

PATTERNS IN

- Multiwavelength profiles
- Broad-band spectra

Patterns in multi-wavelength profiles?

Radio caustic emission?

Relative HE and radio emission altitude

Crab and Vela Slot gap γ-rays

Crab High-altitude (0.2-0.6 R_{LC}) radio cone

Vela Low-altitude (0.08 R_{LC}) radio cone

Are there γ -ray millisecond pulsars?

• SENSITIVITY ABOVE 10 GeV

High energy emission from millisecond pulsars

- Polar cap
 - − A few higher B → slot gap emission
 - Most lower B \implies unscreened E_{II} over whole PC

Continuous acceleration to high altitude -> particles reach radiation reaction limit

$$\gamma_{CRR} = \left(\frac{3}{2} \frac{E_{\parallel} \rho_c^2}{e}\right)^{1/4} \quad 3 \times 10^7$$

Emission from millisecond pulsars in polar gap model

Harding, Usov & Muslimov 2005

Kuiper et al. 2003

Emission from millisecond pulsars in outer gap model

Zhang & Cheng 2003

What is the ratio of radio-loud to radio-quiet γ-ray pulsars?

- MORE PULSAR DETECTIONS
- BLIND SEARCHES
- (What does 'radio-quiet' mean?)

γ-ray and radio emission patterns

Gonthier et al. Poster 14.32

Predicted GLAST pulsar populations

	Normal pulsars		Millisecond pulsars	
	Radio-loud	Radio-quiet	Radio-loud	Radio-quiet
Low Altitude Slot gap	81	43	16	99-131 (35)
High Altitude Slot gap	5	(28) 49		
Outer gap	1 78	258 740		

Few radio-loud pulsars for high-altitude accelerators

Gonthier et al. Poster 14.32 Jiang & Zhang 2006 Story et al. Talk P4.6

() - bright enough for GLAST blind pulsation search

Detecting radio-quiet millisecond pulsars

Follow-up radio observations of GLAST sources Radio period γ-ray period

Summary

- Better definition of pulse profiles
 - Geometry of acceleration and emission
- Spectral components and cutoffs
 - Emission location and mechanisms
- Phase-resolved spectroscopy of more sources
 - Emission components, phase dependence of cutoffs
- Improved sensitivity above 10 GeV
 - Millisecond pulsars?
- Detection of more radio-loud and radio-quiet pulsars
 - Population trends: L γ vs. L $_{SD}$, Spectral index vs. age
 - Ratio of radio-loud/radio-quiet pulsars discriminates between high and low altitude accelerators

Spectra are sensitive to viewing angle

What is the limit to γ -radiation efficiency?

GLAST will explore this region