

The Magnetic Bootstrap

Roger Blandford KIPAC Stanford

With help from

Stefan Funk Anatoly Spitkovsky Don Ellison Luke Drury

Nonthermal electron acceleration

Diffusive Shock Acceleration

- Transmit CR protons with P_{CR} ~E²N(E)~ E $\cdot ^2$ ~0.1 ρu^2
- P_e ~ 0.03 P_p
- Accounts for GCR after including propagation
- Observed in IPM
- Generic eg clusters of galaxies

Radio observations of SNR

- Relativistic electron spectrum
- Tycho, Cas A....

X-ray observations of SNR

- 2-100 keV
- 100TeV electrons

GLAST International Symposium 6 ii 07

- RX J1713.7-3946
 - AD385, R ~ 10pc, u~3000 km s-1
 - $\rho \sim 10^{-25} \text{ g cm}^{-3}$; P_ ~ 10⁻¹² dyne cm⁻²;
 - P₊ ~ 10⁻⁸ dyne cm⁻²; M ~ 150
- · ~O.1 PeV γ-rays
 - Inverse Compton by electrons?
 - Pion decay from protons?
 - Accelerate ~0.3 PeV protons?
 - Explain knee in GCR spectrum
 - $L_x/L_y \sim 3 \Rightarrow$ hadronic emission?
 - =>P₊(100TeV) ~ 10⁻¹⁰ dyne cm⁻²
 - $=>P_+(GeV) \sim 10^{-9} \text{ dyne cm}^{-2} \sim 0.1 P_+$
 - P₊(e) ~ 3 x 10⁻¹¹ dyne cm⁻²
- Particle transport
 - $r_L \sim 4 \times 10^{12} E_{GeV} B_{\mu G}^{-1} Z^{-1} cm$
 - <u R/c

GLAST International Symposium 6 ii 07

Diffusive Shock Acceleration

Non-relativistic shock front

- Protons scattered by magnetic inhomogeneities on either side of a velocity discontinuity
- Describe using distribution function f(p,x)

Transmitted Distribution Function

$$f = f_{-} + (f_{+} - f_{-}) \exp\left[\int_{0}^{x} dx' u/D\right]; x < 0$$

$$f = f_{+}; x > 0$$

$$f_{+}(p) = qp^{-q} \int_{0}^{p} dp' p'^{q-1} f_{-}(p'); q = 3r/(r-1)$$

=>N(E)~E⁻² for strong shock with r=4 Consistent with Galactic cosmic ray spectrum allowing for energy-dependent propagation

Too good to be true!

Diffusion: CR create their own magnetic irregularities ahead of shock through instability if <v>>a

- Instability likely to become nonlinear Bohm limit
- What happens in practice?
- Parallel vs perpendicular diffusion?

Cosmic rays are not test particles

- Include in Rankine-Hugoniot conditions
- u=u(x)
- Include magnetic stress too?

Acceleration controlled by injection

- Cosmic rays are part of the shock
- What happens when v ~ u?
 - Relativistic shocks
- How do you accelerate ~PeV cosmic rays?
 - E < euBR ~ TeV for μ G magnetic field

Particle Transport

Wave Growth

• Short Wavelength Instabilites

- Weibel
- Bell-Lucek
- Streaming instability
 - Kinetic treatment $P_1(\mu)$
 - <V> > a
 - Resonant; $\lambda \sim r_L$
 - $\sigma \sim \mathbf{P}_{res} \mathbf{u} / \rho \mathbf{c} \mathbf{a} \mathbf{r}_{L}$
 - Creates scattering waves at low energy
 - Ineffective at high energy

• Firehose instability

- Fluid treatment $P_2(\mu)$
- Parallel pressure dominant
- $P_z > P_x + B^2$
- Non-resonant; $\lambda > r_L$
- $\sigma_{max} \sim [(P_z P_x)/\rho]^{1/2} / r_L$
- Whirling (mirror) instability
 - Perpendicular pressure dominant
 - P_x > 6 P_z, B²
 - Non-resonant; $\lambda > r_L$
 - $\sigma_{max} \sim a / r_L$
 - Slower than Firehose

$$P_{x,z} \propto \rho^{\gamma_{x,z}} B^{\delta_{x,z}}$$

Magnetic Bootstrap

- Assume:
 - Cosmic rays accelerated by DSA at shock front to ~PeV energy
 - $\ \ \, P_{CR} \sim 0.1 \rho u^2 \ \, E_{9}^{-0.2}$
 - Magnetic field amplified upstream
- Ignore dynamical effect of cosmic rays on flow speed.
 - Small correction
- Wave turbulence maintained at Bohm level by resonant streaming instability at wavelengths for which particles are present if
 - P_{CR} > 0.1 ρ u a
 - Marginally satisfied
 - "Uniform" field is turbulent field created by higher energy particles streaming ahead of the shock with larger Larmor radii and longer wavelengths
- Maximum cosmic ray energy (~PeV) determined by equating diffusion length to shock radius
 - $E_{max} \sim \rho_{-25}^{1/2} u_8^2 R_{19} PeV$
- Cosmic rays with energy ~ E_{max} stream away from the shock in its frame with $P_{1,2}$ (µ) anisotropy
 - Magnetic field grows if $\sigma > u / R$
 - Firehose dominates if u > $(a_{ISM} c)^{1/2} (P_{CR}/\rho u^2)^{-1/4} \sim 1000 \text{ km s}^{-1}$

Summary

- Good evidence that supernova (and other) shock fronts generate magnetic field as well as accelerate cosmic rays
 - Accelerate to > 0.3 PeV
 - =>B> 0.3 mG

Diffusive Shock Acceleration

- ~PeV cosmic rays first
 - Pressure >> ambient magnetic pressure
- Linearly unstable distribution function?
 - Resonant streaming Instability
 - Non-resonant firehose Instability
 - Non-resonant whirling (mirror) Instability

Nonlinear magnetic field growth?

- Precursor field convected downstream
- Uniform for successively lower energy particles
- GLAST prospects
 - Observe Cas A, Tycho, Kepler...;
 - Detect pion feature ~ 0.1 1GeV
 - Quantitative check/calibration of theory
- Modify magnetosonic theory for collisionless plasma
 - Wave speeds, shocks, magnetosonic turbulence

Numerical Simulations GLAST

GLAST International Symposium 6 ii 07