GRBs with GLAST

Tsvi Piran Racah Inst. of Jerusalem, Israel

Yizhong Fan, Ramesh Narayan D. M. Wei Maria Rodriguez Martinez; Yonathan Oren; Uri Jacob

Observations (EAGRET)

Observations (EAGRET): GRB 941017: Gonzalez et al. 2003

Observations (MILAGRITO): GRB 970417a: Atkins et al., 00,03

Additional Observations

- Upper limits from Magic for several Swift bursts (Albert et al., 06, see also poster)
- Claims of detection GRAND at 2.7 σ (Poirier et al 03, but see Fragile etal 03)
- Tibet array: 7σ coincidence ? (Amenomori et al 01)
- ARGO-YBJ array find only upper limits (Di Sciascio, et al., 06)

High Energy Events

- 940217 GeV EGRET.
- 941017 0.2 GeV TASC on EGRET
- 970417 TEV Milagrito

What is happening on the 17ths?

The Internal-External Shocks Model

SSC

	Synch Energy	Electron's Lorentz Factor	SSC energy	Duration
Prompt	100 keV	1000	100GeV	Prompt
Reverse Shock	0.1 eV	1000	100MeV	Short
Forward Shock	10keV- 1eV	10⁵-10 ³	100TeV- MeV	Long

M'esz'aros & Rees 94; Pilla & Leob 98; Waxman & Pe'er 04, Granot & Guetta 03; Kobayashi et al. 07; Dermer, Chiang & Mitman 00; Sari & Esin 01; Zhang & M'esz'aros 01)

External IC

External IC

External IC

elns	Reverse	Forward
Photons	Shock	Shock
Internal	100keV →	0.1-10keV
shocks	<u>100GeV</u>	$\rightarrow \underline{Sub \ GeV}$
	Short	Short
Reverse		0.1eV →
Shock		100 MeV
		Short

Beloborodov 05; Fan, Zhang & Wei 05; Fan & Piran 06; Fan et al., 07) Tsvi Piran First GLAST

Symposium

Flare IC

	Synch Energy	Electron's Lorentz Factor	IC energy
Internal Shocks Flare SSC Refreshed shocks SSC	1-10 keV	100	10-100 MeV (but GeV is possible)
Internal Shocks Flare EIC	.1-10 keV	1000	<u>Sub GeV</u> <u>- TeV</u>

Wei, Yan & Fan 06; Wang, Li & Meszaros 06; Galli, Piro et al 06 Fan, Piran, Narayan & Wei 07 Tsvi Piran First GLAST Symposium

Flare- shock Interaction

(Wang et al. 06 Fan & Piran 06; Fan et al. 007)

The high energy spectrum

(Fan & Piran 2006; Fan , Piran, Narayan & Wei 2007)

Symposium

Long-lasting X-ray flattening

Possible interpretations

- Energy injection
- Increasing e_e
- ?

GRB 060729 (astro-ph/0611240)

Swift early X-ray light curves

Constraining the physical processes

(Fan, Piran, Narayan & Wei 2007)

Energy injection vs. Variable efficiency

A schematic high energy afterglow light CURVE (Fan , Piran, Narayan & Wei 2007)

Further complications are possible and even likely

In some GRBs, the optical and Xray afterglows break chromatically (Fan & Piran, 2006, Panaitescu et al. 2006).

A drastic solution is that the two should be attributed to different physical processes from different regions (Fan & Wei 2005; Piran & Fan 2007)

There are further indications supporting this possibility (e.g. GRB 060218, 070110)

This will lead to additional EIC processes! A possibity that could be tested by GLAST.

Additional Processes

Katz 94, ...

- py EM cascade Boettcher & Dermer 98, Dermer, Atoyan 03, Dermer, Atoyan 04
- Neutronic Processes: $np \rightarrow .. + \pi$

etc... Razzaque & Mészáros, 06

Tsvi Piran First GLAST Symposium $\rightarrow \dots + \gamma$

Conclusions I

- Very High Energy emission is expected from GRBs both from the prompt phase and from the afterglow phase.
- This emission is likely to be detected by GLAST (see several poster for estimates of rates of events).
- The emission would carry a wealth of information on the GRBs (in particular on the Baryonic content of the outflow).
- However, as there are so many options it might be difficult to figure out from non - detailed observations what was the radiation's origin.

GBM Spectroscopy

- The GBMs Spectral ability (8 keV 20MeV) will provide information on the GRBs' high energy spectrum which could answer open questions like:
 - The Amati Relation?
 - The existence of a hard burst population?

Quantum Gravity with GRBs

(Amelino-Camelia et al., 98, Norris et al., 99, Ellis et al., 00,06, Amelino-Camelia and Piran, 02, Boggs 04, Martinez-Rodriguez et la., 06)

- Lorentz Violation (or deformation) appears in various Quantum Gravity Theories.
- Energy dependent dispersion and speed of light. Low energy approximation:

Energy dependent arrival time (Amelino-Camelia et al., 1998)

 $\log E (GeV)$

RHESSI observations of GRB021206

Swift and Konus-Wind observations of GRB051221A

Dt_{16keV-300keV} < 2 msec $\Rightarrow x^{(1)} > 0.0066$ E⁽¹⁾_{LV}>6.6 10¹⁶ GeV $\Rightarrow x^{(2)} > 5 \ 10^{-13}$ $E^{(2)}_{LV} > 5 \ 10^6 \ GeV$

Konus-Wind

Tsvi Piran First GLAST Symposium <u>Z=0.5465</u>

Swift

Conditions for Detection

Conclusions II

- Gamma Ray Observations could shed light on possible Quantum Gravity induced Lorentz violation (Energy dependent speed of light).
- Already now GRBs timing give the best limits on the scale of possible Lorentz violation: $E^{(1)}_{LV} > 10^{17} \text{ GeV}$
- Surprisingly distance and high energy do not work in favor of a better limit for n=1. GBM will have a major role here.
- High energy photons are important for n ≥
 2. LAT will provide the best limit on these models.

GRB photons & high energy neutrinos

One expects 10 neutrinos detected in a km³ detector per 1000 GRBs

