

Dark matter constraints from observations of dwarf spheroidal galaxies with the Fermi-LAT

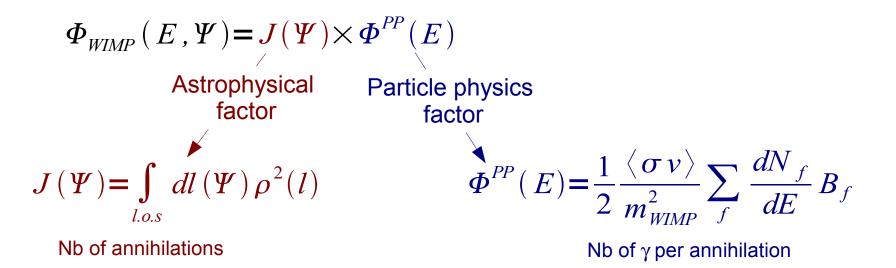
Christian Farnier, LPTA, CNRS, UM2 on behalf of the Fermi-LAT collaboration

Institut National de Physique Nucléaire et de Physique des Particules

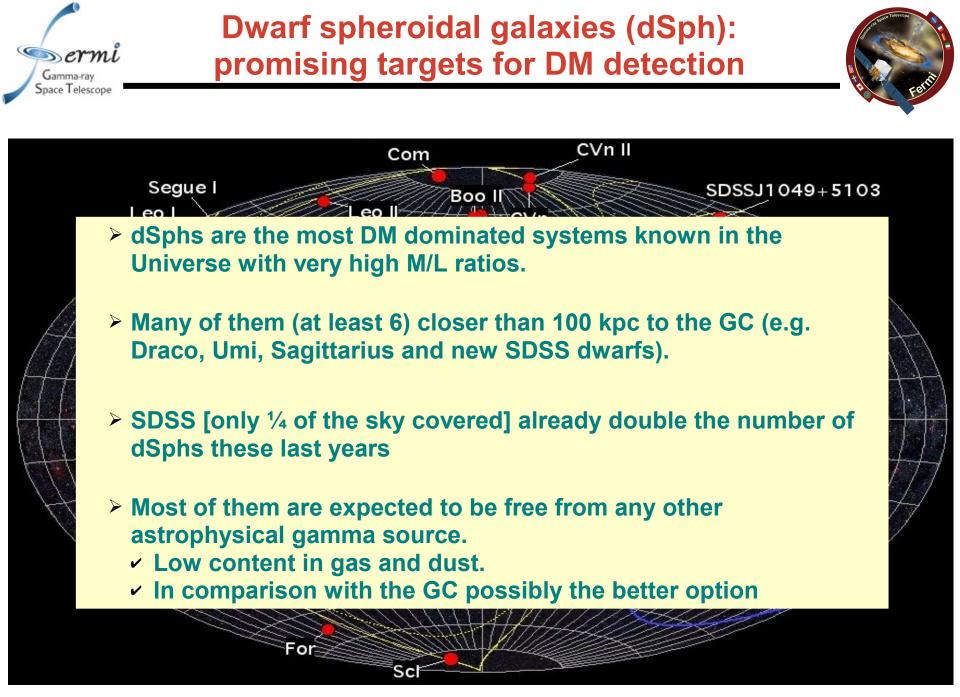
Dark matter searches through \gamma-ray and targets

Outline

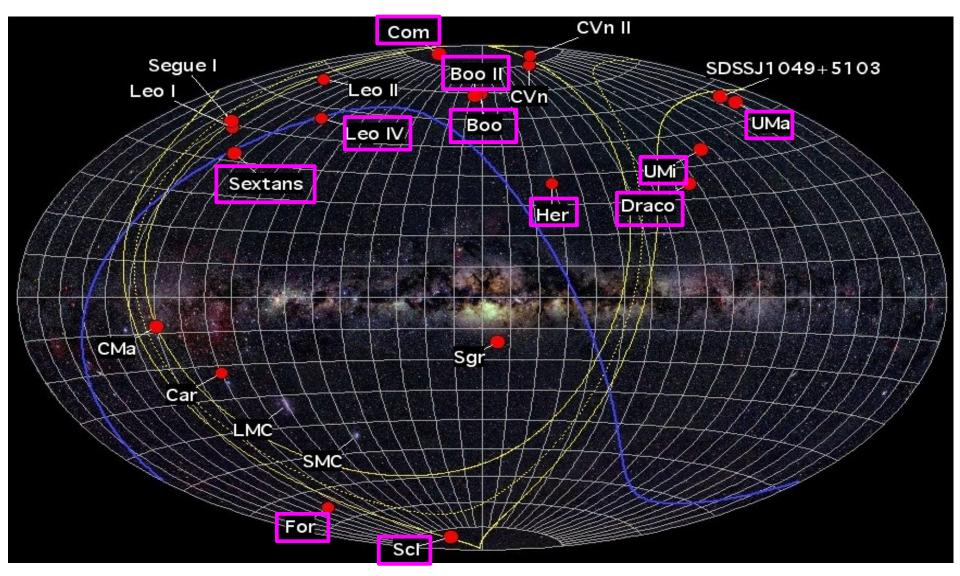
Analysis & fluxes upper-limits


Constraints on several DM framework

DM composed ¹/₄ of the total energy budget of the Universe but its <u>nature is</u> <u>still unknown</u>


Self annihilation of **WIMPs** led to High Energy γ -rays in final state

Particle physics factor spectrum features:


- line: « smoking gun » for DM search but loop suppressed (Poster 134 Y. Edmonds)
- continuum: differs from power-law with a cut-off at the mass, $m_{_{\rm WIMP}}$

C. Farnier

Dwarf spheroidal galaxies (dSph): promising targets for DM detection

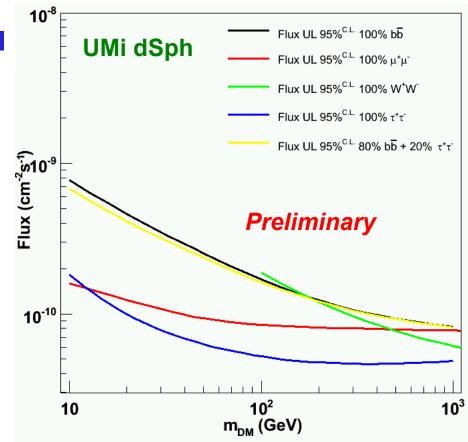
Sermi

Gamma-ray Space Telescope

• <u>14 dSphs</u> considered:

Submitted to ApJL

- Selection criteria:
 - Proximity (< 180 kpc)
 - Far from the Galactic Plane (|b|>30°)
- 11 months data analyzed
- Event selection:
 - Diffuse class events
 - Zenith Angle < 105°</p>
 - Field of view (fov) radius: 10°
- dSph fov modelisation:
 - Diffuse components: galactic diffuse & isotropic
 - Point sources (as determined in the Fermi-LAT catalog)
- Energy ranges: 100, 500 & 1000 MeV up to 50GeV


Results:

C. Farr

Flux 95% upper-limits derived from profile likelihood and calculated for several spectra:

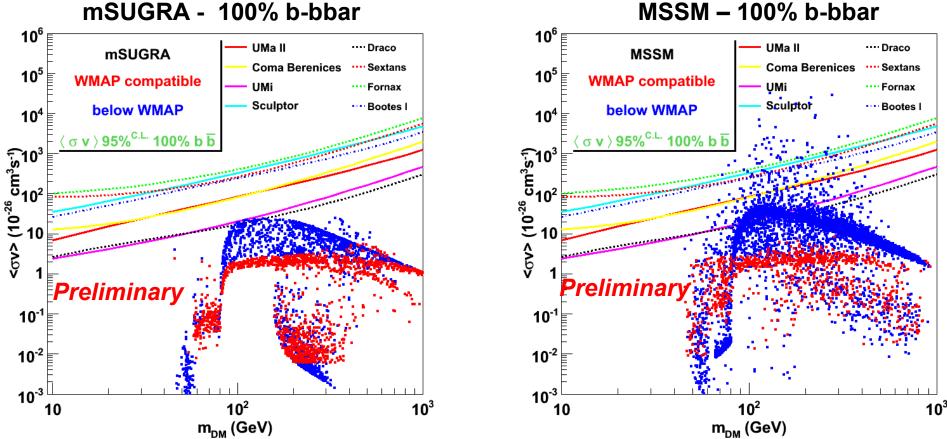
- Power-law spectrum with spectral index of -1, -1.8, -2, -2.2, -2.4
- Dark matter annihilation γ-ray spectrum shape using DMFit module (Profumo & Jeltema, 2008):
 - Several exclusive annihilation channels: bbbar, τ⁺τ⁻, AMSB (100% W⁺W⁻), μ⁺μ
 - As well as mixed finale state: 80%bbbar+20% τ⁺τ⁻
 - And Kaluza-Klein B⁽¹⁾ branching ratio

Independant of the DM distribution $O(10^{-9} \text{ ph/cm}^2/\text{s})$

C. Farnier

Gamma-ray Space Telescope

- <u>Astrophysical factor J</u> derive from kinematic individual stellar data for 8 dSphs
- Profile assume: NFW
- **Procedure:** maximum likelihood Markov-chain iteration


$ ho_s$	r _s	J^{NFW}	
$(10^8 \ M_{\odot} \ kpc^{-3})$	(kpc)	$(10^{19}~GeV^2~cm^{-5})$	
$1.43^{+3.37}_{-0.52}$	0.13 ^{+0.10} -0.05	0.58+0.91	
$0.84^{+2.98}_{-0.42}$	$0.11_{-0.05}^{+0.11}$	0.16+0.22	
$0.89^{+2.34}_{-0.69}$	0.18 ^{+0.19} -0.09	0.16+0.35	
0.44 ^{+1.04} -0.27	0.48 ^{+0.38}	0.64 ^{+0.25} _{-0.18}	-
0.21+0.32	0.70 ^{+0.57} 0.27	0.24+0.06	
$0.19^{+0.14}_{-0.07}$	$1.84^{+1.0}_{-0.66}$	1.20 ^{+0.31} -0.25	-
$0.47^{+0.81}_{-0.30}$	0.30+0.19	0.06+0.03	
0.36+0.69	0.43 ^{+0.36}	0.06+0.03	
	$(10^{8} M_{\odot} kpc^{-3})$ $1.43^{+3.37}_{-0.52}$ $0.84^{+2.98}_{-0.42}$ $0.89^{+2.34}_{-0.42}$ $0.89^{+2.34}_{-0.69}$ $Prelimit$ $0.44^{+1.04}_{-0.27}$ $0.21^{+0.32}_{-0.12}$ $0.19^{+0.14}_{-0.07}$ $0.47^{+0.81}_{-0.30}$ $0.36^{+0.69}_{-0.26}$	$\begin{array}{c cccc} (10^8 \ M_{\odot} \ kpc^{-3}) & (kpc) \\ \hline 1.43^{+3.37}_{-0.52} & 0.13^{+0.10}_{-0.05} \\ \hline 0.84^{+2.98}_{-0.42} & 0.11^{+0.11}_{-0.05} \\ \hline 0.89^{+2.34}_{-0.42} & 0.18^{+0.19}_{-0.09} \\ \hline \textbf{Preliminary} \\ 0.44^{+1.04}_{-0.27} & 0.48^{+0.38}_{-0.2} \\ \hline 0.21^{+0.32}_{-0.12} & 0.70^{+0.57}_{-0.27} \\ \hline 0.19^{+0.14}_{-0.07} & 1.84^{+1.0}_{-0.66} \\ \hline 0.47^{+0.81}_{-0.30} & 0.30^{+0.19}_{-0.11} \\ \hline 0.36^{+0.69}_{-0.26} & 0.43^{+0.36}_{-0.19} \end{array}$	$\begin{array}{c cccc} \mu_{3} & \mu_{3} & \mu_{4} & \mu_{5} \\ \hline (10^{8} \ M_{\odot} \ kpc^{-3}) & (kpc) & (10^{19} \ GeV^{2} \ cm^{-5}) \\ \hline 1.43^{+3.37}_{-0.52} & 0.13^{+0.10}_{-0.05} & 0.58^{+0.91}_{-0.35} \\ \hline 0.84^{+2.98}_{-0.42} & 0.11^{+0.11}_{-0.05} & 0.16^{+0.22}_{-0.08} \\ \hline 0.89^{+2.34}_{-0.42} & 0.18^{+0.19}_{-0.09} & 0.16^{+0.35}_{-0.13} \\ \hline 0.89^{+2.34}_{-0.69} & 0.18^{+0.19}_{-0.09} & 0.16^{+0.35}_{-0.13} \\ \hline 0.44^{+1.04}_{-0.27} & 0.48^{+0.38}_{-0.2} & 0.64^{+0.25}_{-0.18} \\ \hline 0.21^{+0.32}_{-0.12} & 0.70^{+0.57}_{-0.27} & 0.24^{+0.06}_{-0.06} \\ \hline 0.19^{+0.14}_{-0.07} & 1.84^{+1.0}_{-0.66} & 1.20^{+0.31}_{-0.25} \\ \hline 0.47^{+0.81}_{-0.30} & 0.30^{+0.19}_{-0.11} & 0.06^{+0.03}_{-0.02} \\ \hline \end{array}$

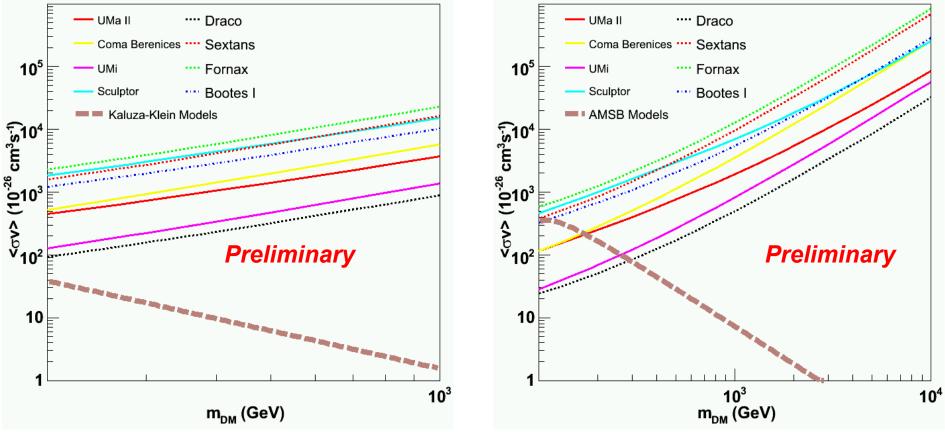
C. Farnier

95^{%CL} upper-limits on $\langle \sigma v \rangle$ inferred from flux upper-limits

mSUGRA - 100% b-bbar

Stronger upper-limits obtained for Umi & Draco dSphs After only 11 months, the LAT constraints are at the level of SUSY models

C. Farnier


Gamma-ray Space Telescope

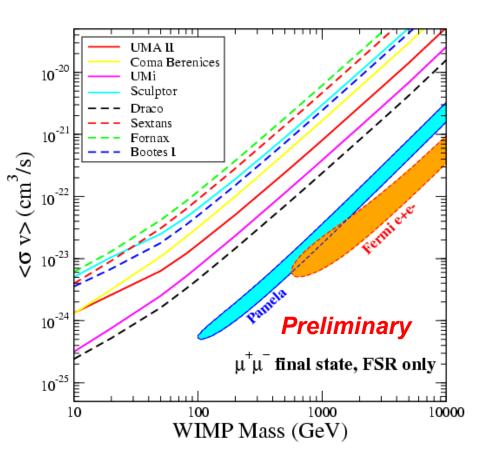
Annihilation cross section constraints

Anomaly Mediated SUSY Breaking

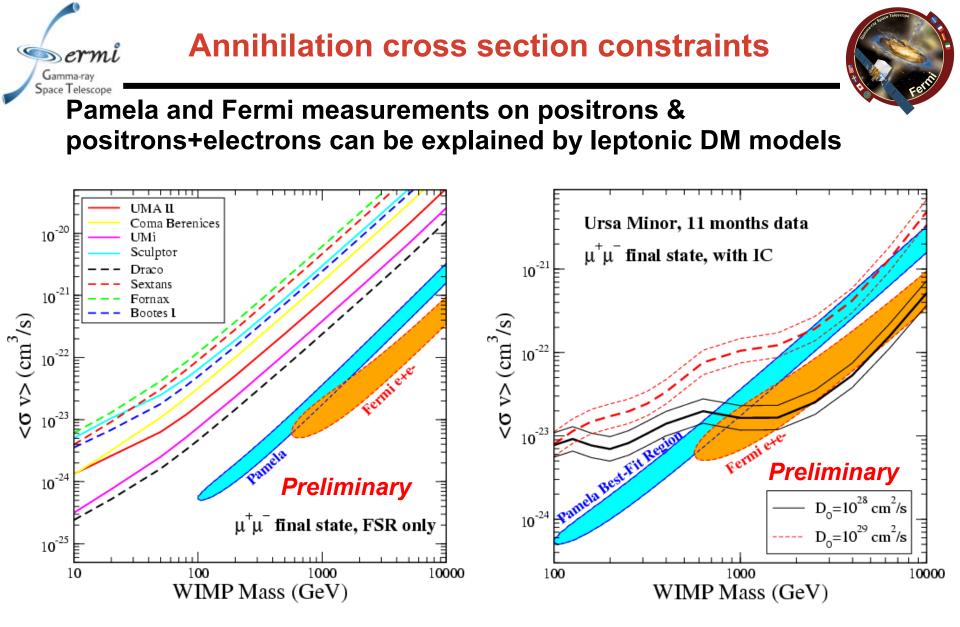
Universal Extra-Dimension

No constraints derived on UED models

AMSB models with masses < 300GeV are already disfavoured by our limits


C. Farnier

Gamma-ray Space Telescope


Annihilation cross section constraints

Pamela and Fermi measurements on positrons & positrons+electrons can be explained by leptonic DM models

Gamma-ray

Constraints derived on dSphs including IC scattering of secondary e+e- can already restrain favoured region

- No significant signal detected for any of our catalog of dwarfs
- Flux upper-limits derived for several spectra
 - ⇒<σv> upper-limits (0(5x10⁻²⁶cm³/s @ 30GeV- 10⁻²⁵cm³/s @ 100GeV) for NFW profiles) starting to constraint low relic density models
- Important restriction of the PAMELA & Fermi-LAT favoured leptophillic models
- Limits improvements expected in the future with the enlargement of the energy range and the improvements on the diffuse emission modeling