Multiwavelength observations of Fermi-LAT monitored blazars with SMARTS

Erin Wells Bonning Yale University

Collaborators

Charles Bailyn (Fermi GI Grant 011283) Paolo Coppi Meg Urry Michelle Buxton (Postdoc) Ritaban Chatterjee (Postdoc) Jedidah Isler (Grad student) Nathan Loughton (Undergrad)

Laura Maraschi (INAF-Brera) Giovanni Fossati (Rice U)

Sources

LAT monitored blazars visible from CTIO (Chile) + other sources of interest (e.g. 0948+0022)

FSRQ		BL Lac
0208-512	0528+134	0235+164
3C 273	3C 279	OJ 287
1406-076	1510-089	2155-304
1622-297	1730-130	
2155-304	3C 454.3	

Optical/IR observations

- Bright blazars observed near-daily with the Small and Moderate Aperture Telescope System (SMARTS) at Cerro Tololo, Chile
- SMARTS I.3m + ANDICAM. Can obtain simultaneous data from 0.4 to 2.2 microns (BVRJK). Photometry taken with I-3 day cadence.
- Spectra of brighter blazars taken about once per month.
- Data through 31 July 2009 released at

http://www.astro.yale.edu/smarts/glast

Fermi GI grant 011283

0208-512

0528+|34

0235+164

3C 279

3C 273

OJ 287

|5|0-089

|5|0-089

3C 454.3

3C 454.3

3C 454.3

3C 454.3

3C 454.3

3C 454.3: underlying optical emission

3C 454.3 Fractional variability amplitude

3C 454.3: color-magnitude

3C 454.3: color-magnitude

3C 454.3: Spectra

From J. Isler

2155-304

2155-304

2155-304: colors v R-band

Future directions

- SMARTS monitoring of bright blazars is ongoing.
 - Favorite source? Let us know glast@panlists.yale.edu
- Can the time-dependent SED be modeled self-consistently?
- Do optical emission line properties correlate with jet power?
- Short v. long term variability studies

- How is jet powered?
- What particle populations?

Challenges to SED modeling

- Single-epoch SED can be fit with leptonic or hadronic models.
- Variable sources require simultaneous data
- Broad-band SED
 measurements require
 multiple observatories
- Long term, simultaneous, multi-wavelength monitoring programs required

Boettcher et al. 2009

MW light curve

• NIR, Optical, UV, and Gamma-ray fluxes vary together with lag of less than one day.

 Variability amplitude in IR comparable to that in Gamma rays; decreases towards the UV

• Colors redder at higher fluxes.

• X-rays uncorrelated with other wavelengths.

Bonning et al., ApJL, 697, L81 (2009)

Historical comparison

Raiteri et al. 2007