Submillimeter Variability and the γ-ray Connection in Fermi Blazars

Allison Strom University of Arizona

Aneta Siemiginowska (CfA), Mark Gurwell (CfA), Brandon Kelly (CfA)

Jet Emission Processes

- Synchrotron
- Inverse Compton
 - Synchrotron-self-Compton
 - External-radiation-Compton

The SMA-Fermi Blazars

- 171 objects
 observed by SMA
 35 BL Lacs
 - 136 FSRQs
- 43 objects observed by *Fermi*
 - 14 BL Lacs
 - 29 FSRQs
- $0.03 \le z \le 2.19$

SMA Light Curves

http://sma1.sma.hawaii.edu/callist/callist.html

- Beginning in 2003
 - irregular sampling
- Typically variable
 - diverse properties with large range of observed characteristics
- Quasi-simultaneous band measurements
 - 850 m observed less
 frequently than 1mm
- Brighter objects observed more often
 - BL Lacs underrepresented

Analyzing Blazar Variability

- Variability Index (Hovatta et al. 2007)
- First-order Structure Function (e.g. Simonetti 1985)
- Continuous First-order Autoregressive Process (Kelly et al. 2008)

Variability Index

$$V = \frac{(F_{\max} - \sigma_{F_{\max}}) - (F_{\min} + \sigma_{F_{\min}})}{(F_{\max} - \sigma_{F_{\max}}) + (F_{\min} + \sigma_{F_{\min}})}$$

- No difference in BL Lac and FSRQ distributions
- V < 0 indicates measurement errors larger than intrinsic variability

11/04/2009

Analyzing Blazar Variability

- Variability Index (Hovatta et al. 2007)
- First-order Structure Function (e.g. Simonetti 1985)
- Continuous First-order Autoregressive Process (Kelly et al. 2008)

Analyzing Blazar Variability

- Variability Index (Hovatta et al. 2007)
- First-order Structure Function (e.g. Simonetti 1985)
- Continuous First-order Autoregressive Process (Kelly et al. 2008)

CAR(1) Process $dS(t) = -\frac{1}{\tau}S(t)dt + \sigma\sqrt{dt}\epsilon(t) + bdt$

CAR(1) Process $dS(t) = -\frac{1}{\tau}S(t)dt + \sigma\sqrt{dt}\epsilon(t) + bdt$

$$\label{eq:GAR(1) Process} \begin{split} & \text{CAR(1) Process} \\ & dS(t) = -\frac{1}{\tau}S(t)dt + \sigma\sqrt{dt}\epsilon(t) + \textit{b}dt \end{split}$$

$$\label{eq:GAR(1) Process} \begin{split} & {\rm CAR(1) \ Process} \\ & dS(t) = -\frac{1}{\tau}S(t)dt + \sigma\sqrt{dt}\epsilon(t) + bdt \end{split}$$

CAR(1) Results

Connections with Fermi

- Relationship between classes not based solely on luminosity
- Provides constraints on particle populations and magnetic field strength

Connections with Fermi

- Relationship between classes not based solely on luminosity
- Provides constraints on particle populations and magnetic field strength

Summary

- Submm luminosities and energy spectral indexes support the spectral sequence
- BL Lacs and FSRQs do not show differences in variability amplitude or characteristic timescale
- All of our blazar light curves are consistent with being produced by a single process
- *Fermi*-detected sources have synchrotron peaks at overall higher frequencies, regardless of luminosity
- Next: correlate sources in updated Fermi catalog with submillimeter observations

The Structure Function

11/04/2009

Connections with Fermi

- BL Lacs with steeper gamma-ray spectra unlikely
- Relationship between classes not based solely on luminosity