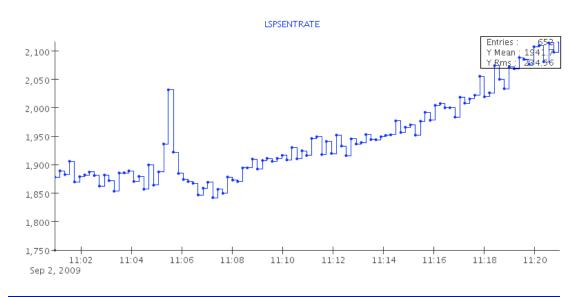
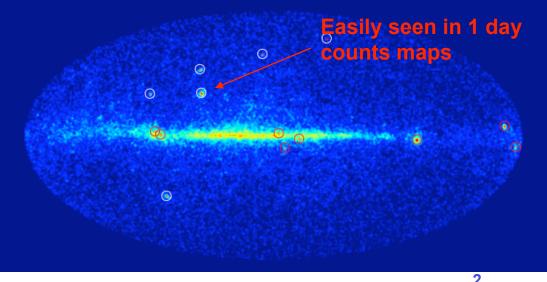


Fermi Observations of GRB 090902B: Spectral and Temporal Complexity During the Prompt and Extended Emission Phases

Jim Chiang (KIPAC/SLAC), Elisabetta Bissaldi (MPI), Francesco de Palma (Bari), Sheila McBreen (MPI), Soebur Razzaque (NRL)

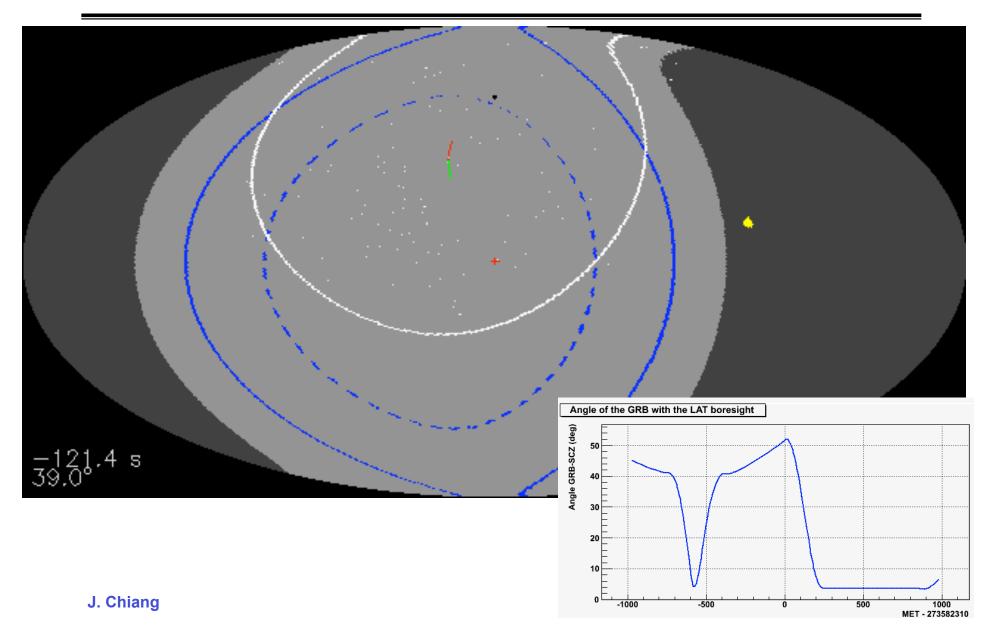
> On behalf of the Fermi GBM and LAT Collaborations


Abdo et al. 2009, ApJ, 706, L138 (arXiv:0909.2470v2)


GRB 090902B

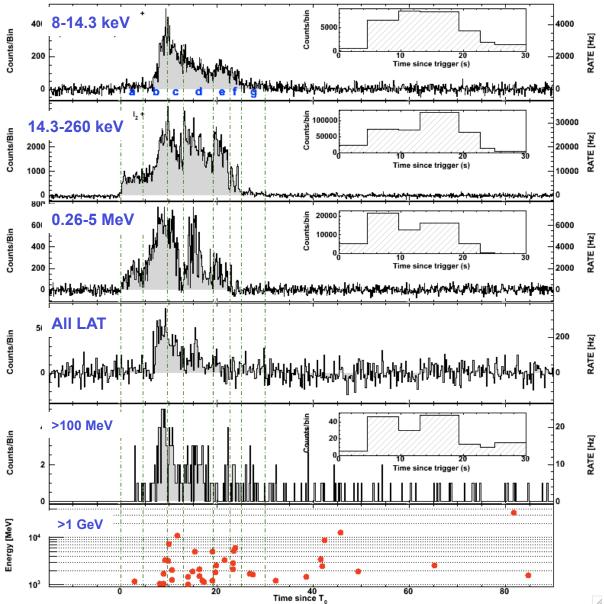
The Second LAT Collaboration Burst

- GBM Trigger at 11:05:08.31 • UT, 2 September 2009
- **ARR** initiated •
- **GBM loc: RA, Dec = 264.5**, ٠ 26.5, 51° from LAT boresight
- 200 counts > 100 MeV, 39 > • 1 GeV in 100 s
- LAT location: 265.00, 27.33 •
- Swift XRT afterglow/loc. •
- **GROND** localization 3.3 • arcmin from LAT location
- Gemini-N redshift: z = 1.822 ٠



Fermi Symposium 2009, 3 November 2009

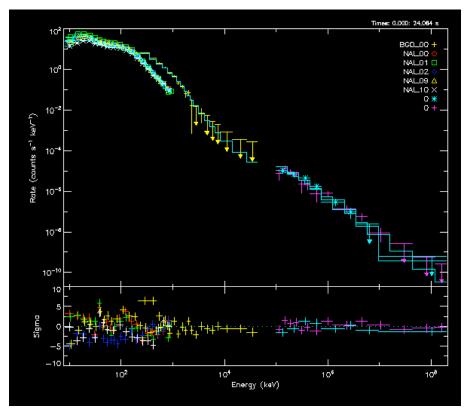
Autonomous Repoint



Properties and Light Curves

More vitae:

- T90 = 21.9 s, 50-300 keV
- Fluence = 4.4×10⁻⁴ erg cm⁻² (10 keV – 10 GeV)
- E_{iso} = 3.6×10⁵⁴ erg (cf. GRB 080916C, 9×10⁵⁴ erg)
- LAT emission extends well beyond GBM prompt phase
- Highest energy photon measured from a burst: 33.4
 ^{+2.7}_{-3.5} GeV, arriving 82 s after the GBM trigger
- Study correlated variability in various bands,
- Possible delayed onset of >100 MeV emission



Fermi Symposium 2009, 3 November 2009

Time-integrated Spectrum

- Evidence for a hard power-law component, Γ = -1.93
- Band + PL $\Rightarrow \triangle CSTAT = 2000 (2 \text{ dof})$
- PL / (Band+PL) fluence ratio = 24%, 10 keV- 10 GeV

Low energy extension of PL component

Interval b, T0 + 4.6 to 9.6 s

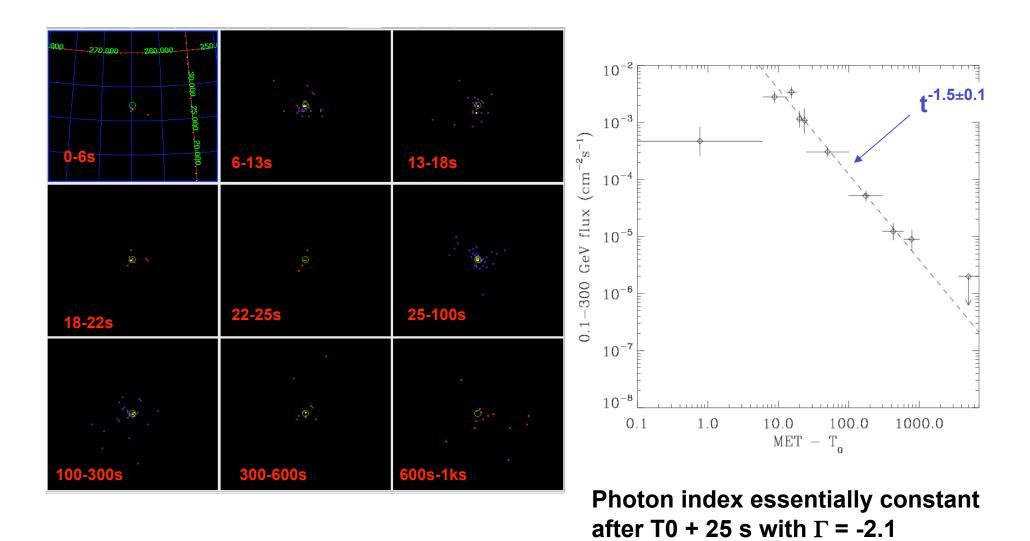
∆CSTAT = 3165, (≥ 1000 for GBM only)

This is the first time a low energy extension of the power-law component has been definitively seen.

Time-resolved Spectral Fits

Table 1. Band function + power-law fit parameters for the time-resolved spectral fits.

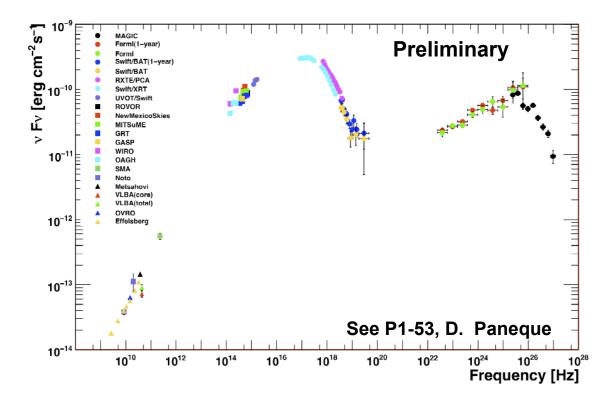
Interval	Time Range (s)	E_{peak} (kev)	α	β	Γ	CSTAT/DOF	ΔCSTAT	Energy fluence $(erg cm^{-2}, 8 keV - 30 GeV)$
	0.0–30.0	$726~(\pm 8)$	$-0.61~(\pm 0.01)$	$-3.8 \left(\substack{+0.2\\-0.3}\right)$	$-1.93(^{+0.01}_{-0.01})$	2562/963	2005	$(4.59 \pm 0.05) \times 10^{-4}$
a.	0.0 - 4.6	$526 \ (\pm 12)$	$-0.09~(\pm 0.04)$	$-3.7 (^{+0.3}_{-0.6})$	$-1.87(^{+0.04}_{-0.05})$	901/963	43	$(3.72 \pm 0.13) \times 10^{-5}$
b.	4.6 - 9.6	908 $\binom{+15}{-14}$	$0.07~(\pm 0.03)$	$-3.9 (^{+0.2}_{-0.3})$	$-1.94~(\pm 0.02)$	1250/963	3165	$(1.44 \pm 0.03) \times 10^{-4}$
c.	9.6 - 13.0	$821 \ (\pm 16)$	$-0.26~(\pm 0.03)$	$-5.0(^{+0.8}_{-\infty})$	$-1.98~(\pm 0.02)$	1310/963	2109	$(9.42 \pm 0.24) \times 10^{-5}$
d.	13.0 - 19.2	$529 (\pm 9)$	$-0.65 (\pm -0.02)$	$-3.2 \ (^{+0.1}_{-0.2})$	$-1.86~(\pm 0.02)$	1418/963	199	$(1.29 \pm 0.03) \times 10^{-4}$
e.	19.2 - 22.7	$317 (\pm 8)$	$-0.78 (\pm -0.02)$	$-2.4 (\pm 0.1)$		1117/965		$(4.8 \pm 0.2) \times 10^{-5}$
f.	22.7 - 25.0	236 $\binom{+25}{-33}$	$-1.30 \left(\substack{+0.04 \\ -0.03} \right)$	$-2.2 \ (\pm 0.1)$		1077/965		$(1.0\pm0.1){ imes}10^{-5}$
e.+f.	19.2 - 25.0	$327 (\pm 8)$	$-0.91 \ (\pm 0.02)$	$-2.6 (\pm 0.1)$	$-1.59~(\pm 0.20)$	1219/963	16	$(6.1 \pm 0.4) \times 10^{-5}$
g.	25.0 - 30.0				-1.93 $\binom{+0.25}{-0.26}$	1209/967		$(6.8 \pm 0.8) imes 10^{-6}$


- Band component has an initial hardening then softens over course of prompt phase
- Power-law component index is roughly constant (Γ~1.9) through T0+19.2s, then hardens in last 6 s (Γ~1.6)

GRB 090902B

Fermi Symposium 2009, 3 November 2009

Extended emission in LAT band



Fermi Symposium 2009, 3 November 2009

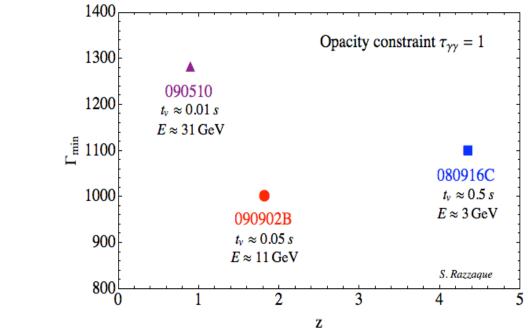
Implications for Models

- Conventional synchrotron-SSC models have difficulties producing <50 MeV power-law excess
- Syn-SSC blazar example: Mrk 421

Gamma-ray Space Telescor

Implications for Models^{*}

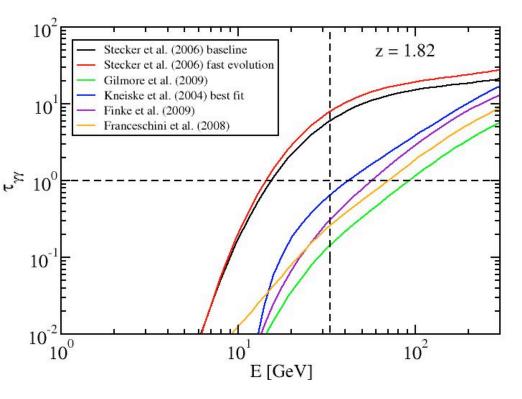
- Alternatives to syn-SSC:
 - Hadronic models:
 - Proton synchrotron radiation (requires large B-fields)
 - Synchrotron by secondary pairs produced via photohadron interactions
 - Both scenarios require substantially more energy (1—2 orders of magnitude) than observed E_{iso} (=3.6×10⁵⁴ erg).
 - Possible source of UHE cosmic rays
 - Early Afterglow (e+e- synchrotron from external shock)
 - Can also account for possible delayed (~9s) onset of power-law component
 - Variability time scale of 90 ms in LAT data argues
 against external shock

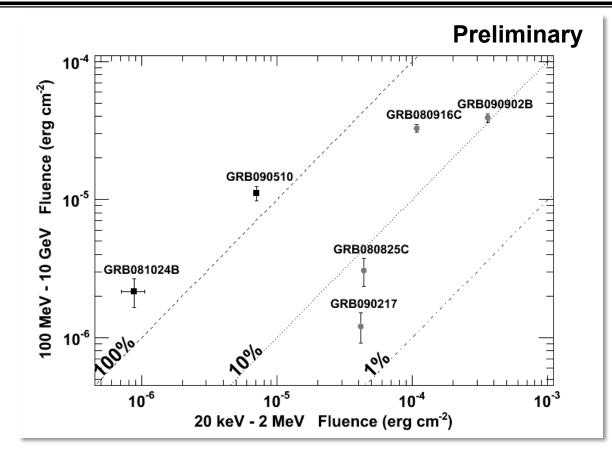


J. Chiang

Implications for Models

- Extended Emission (after T₀ + 30s):
 - Afterglow synchrotron interpretation has difficulty explaining 33.4 GeV photon at T_0 + 82s
 - Photon index of -2.1 may pose difficulties for afterglow SSC emission
- Constraints on Γ_{\min} :


```
- E_{max} = 11.16 \text{ GeV}, t_{var} = 51 \text{ ms} (during prompt phase)
```



Implications for Models

- EBL constraints: most models optically thin except "baseline" and "fast-evolution" models of Stecker et al 2006
- From analyses of MC sims, extrapolating the lower energy powerlaw, with and without absorption, these models are disfavored at >3σ level

LAT Fluence vs GBM Fluence

 Suggests that short and long could have different efficiencies for emitting gamma rays

Summary

- One of the most luminous bursts seen by the LAT: E_{iso}=3.6×10⁵⁴ erg
- Hard additional power-law component in the LAT band that extrapolates down to < 50 keV
 - Poses serious challenges for syn-SSC models
- PL/(Band + PL) fluence ratio: 24%
- Highest photon energy from a GRB: 33.4 GeV
- Extended emission out to 1ks, ~t^{-1.5} decline
- Γ_{min} = 1000
- z = 1.822 and $E_{max} = 33.4$ GeV constrains EBL models