

Discovery of a new torque reversal of the accreting X-ray pulsar 4U 1626-67 by Fermi/GBM

A.Camero-Arranz^(1,2),

M. Finger^(2,3), C. Wilson-Hodge⁽⁴⁾, E. Beklen⁽⁵⁾, N. Ikhsanov⁽²⁾ and P. Jenke⁽³⁾ on behalf of the GBM pulsar project

(1)FECYT, (2) NSSTC, (3) USRA, (4) NASA/MSFC, (5) METU

The GBM pulsar project

To continuously monitor the full sky for accreting X-ray pulsars with spin frequencies in the 1 mHz to 2 Hz range.

This monitoring system has two components:

- 1) daily blind search for pulsed sources, and
- 2) monitoring known sources, e.g. 4U 1626-67

2009 Fermi Symposium

4U 1626-67 The Fermi/Gamma-ray Burst Monitor (GBM)

GBM :

12 Sodium lodide (Nal) and 2 Bismuth Germanate (BGO) scintillation detectors

Energy range:

Nal det: ~8 keV to 1 MeV BGO det: 200 keV to 40MeV.

Observations:

-(GBM) Nal detectors CTIME data (0.256 s time bins, and 8 energy channels).

- Our analysis: **channels 1** (11.7-26.8 keV) and **2** (26.8-50.3 keV).

Space Telescope 2009 Fermi Symposium

Samma-ray

Accreting X-ray pulsars

Introduction

Introduction

What do we know about 4U 1626-67?

. LMXRB

. P_{pulse}= 7.66 s

. Ultracompact 42 min orbit

. Optical counterpart: KZ TrA, V~17.5 (strong UV excess and high optical pulse fraction)

. 48 mHz quasi-periodic oscillation (QPO)

. ~37 keV absorption cyclotron feature

. B= (2.4-6.3)x10¹²G

. Distance 5-13 kpc

Timing results

NEW TORQUE REVERSAL AND SPIN-UP OF THE ACCRETING X-RAY PULSAR 4U 1626-67 (submitted to ApJ; Atel #2099)

2009 Fermi Symposium

Space Telescope

Timing results

Almost identical spin up rates before and after the reversal

Count rate increment a factor of 2.5

Strong torque-luminosity correlation, only during the torque reversal (green squares).

2009 Fermi Symposium

pace Telescope

Spectral analysis

Year

HR-intensity diagram

Long-term X-ray flux history (relative to HEAO 1)

Spectral transition from hard to soft during the torque reversal

2009 Fermi Symposium

 Same physical mechanism operating in 1990 and 2008 reversals?

 same
 same

s⁻¹cm -2)

(counts

Spectral analysis

HR-intensity diagram

0.009 before reversa 0.008 during reversa after reversal 0.007 0.006 BAT rate 0.005 0.004 0.003 0.008 0.009 0.010.0110.012HR 15-50 keV /1.5-12 keV (BAT/ASM)

Spectral transition from hard to soft during the torque reversal

Long-term X-ray flux history (relative to HEAO 1)

- Different flux values \rightarrow ? - Models fail to reproduce these observations

Summary and conclusions

- After about 18 years of steadily spinning down 4U1626-67 experienced a new torque reversal.
- It becomes difficult to reconcile theoretical models with these recent observations:
 - 1) The spin-up and spin-down torques were again almost identical before and after the transition.
 - 2) It lasted ~150 days (centered on 2008 Feb 4).
 - 3) During the spin down period (from 1990 to 2008), the spin-up rate was increasing while the flux decreased.
 - 4) Only during the reversal we found a strong torque-luminosity correlation.
 - 5) The X-ray flux values from the 1990 June and the 2008 Feb torque reversals are different.
 - 6) The spectrum during the transition is the hardest.

2009 Fermi Symposium

2-5 November Washington

Exploring the Extreme Universe

Summary and conclusions

- After about 18 years of steadily spinning down 4U1626-67 experienced a new torque reversal.
- It becomes difficult to reconcile theoretical models with these recent observations:
 - 1) The spin-up and spin-down torques were again almost identical before and after the transition.
 - 2) It lasted ~150 days (centered on 2008 Feb 4).
 - 3) During the spin down period (from 1990 to 2008), the spin-up rate was increasing while the flux decreased.
 - 4) Only during the reversal we found a strong correlation torque-luminosity.
 - 5) The X-ray flux values from the 1990 June and the 2008 Feb torque reversals are different.
- 6) The spectrum is harder during the torque transition than before or after.

Today the GBM pulsar project has detected 17 accreting X-ray pulsars and is currently monitoring historical transients, including 4U 1626-67 (more info: Mark Finger's talk).

2009 Fermi Symposium

2-5 November Washington

Exploring the Extreme Universe