

C. Venter, A. K. Harding, & L. Guillemot (astro-ph:0911.0872v1) Second Fermi Symposium, Washington, DC 2 – 5 November 2009

Goddard Space Flight Center

New Gamma-ray MSPs

Name	P (ms)	\dot{P} (10 ⁻²⁰)	Distance (kpc)	$\begin{array}{c} \text{Age} \\ (10^9 \text{ yr}) \end{array}$	$\dot{E}_{\rm rot}$ (10 ³³ erg s ⁻¹)	B_0 (10 ⁸ G)
J0030+0451	4.865	1.01	0.300 ± 0.090	7.63	3.47	2.04
J0218 + 4232	2.323	7.79	2.70 ± 0.60	0.47	245	4.31
J0437 - 4715	5.757	1.39	0.156 ± 0.002	6.55	2.88	2.87
J0613 - 0200	3.061	0.915	0.48 ± 0.14	5.31	12.6	1.69
J0751 + 1807	3.479	0.755	0.62 ± 0.31	7.30	7.08	1.64
J1614 - 2230	3.151	0.397	1.30 ± 0.25	12.6	5.01	1.13
J1744 - 1134	4.075	0.682	0.470 ± 0.090	9.47	3.98	1.69
J2124 - 3358	4.931	1.21	0.25 ± 0.13	6.47	3.98	2.47
J0034-0534	1.877	0.259	0.54 (+ 0.22 - 0.14)	11.5	15.5	0.706

Abdo et al. 2009, Science, 325, 848 Venter et al. (2009) *(astro-ph:0911.0872v1)* Abdo et al. 2009, in preparation (see talk of L. Guillemot)

'Recycled' Pulsars

Alpar et al. (1982) Archibald et al. (2009)

http://www.mcgill.ca/channels/announcements/item/?item_id=106788

Millisecond Pulsars

Accelerator Geometries

Emission on leading field lines

- Spreads out in phase
- Arrives at inertial observer at different times

Caustic emission

- Dipole magnetic field
- Outer edge of open volume

(Observed: Static & retarded dipole, for $\xi \le 1$)

Harding et al. (2007); Gonthier (2004) Model of Arzoumanian, Chernoff & Cordes (2002) – 400 MHz; Kijak & Gil (2003) Frequency-dependent cone width of Mitra & Deshpande (1999)

Total flux:

Gamma-ray pace Telescope

$$S(\theta, \nu) = F_{\rm cone} e^{-(\theta - \bar{\theta})^2/\omega}$$

Cone radius: $\rho_{\rm cone} = 1.24^{\circ} r_{\rm KG}^{0.5} P^{-0.5}$

Cone position
$$\,ar{ heta}=(1.0-2.63\,\delta_w)
ho_{
m cone}$$

Cone width: $w_e = \delta_w \rho_{\rm cone}$

Emission altitude:

$$r_{\rm KG} \approx 40 \left(\frac{\dot{P}}{10^{-15} {\rm s}\,{\rm s}^{-1}}\right)^{0.07} P^{0.3} \nu_{\rm GHz}^{-0.26}$$

Gamma-ray Space Telescope	RESULTS: MSP Light Curves
	(P = 2, 3, 5 ms; various α, ζ)

TPC	OG1			PSPC		
TPCT (10,30) [TPCT (10,40) [TPCT (10,50) [TPCT (10,60) TPCT (20,30) [TPCT (20,40) [TPCT (20,50) [TPCT (20,60)	OG1 {10,30} OG1 {10,40} OG1 {10,50} OG1 {10,50} OG1 {10,50} OG1 {10,70} OG1 {10,80} OG1 {10,80} OG1 {10,90}			PC2 (10,30) PC2 (10,40) PC2 (10,50) PC2 (10,60) PC2 (10,70) PC2 (10,80) PC2 (10,90) PC2 (20,30) PC2 (20,40) PC2 (20,50) PC2 (20,60) PC2 (20,70) PC2 (20,80) PC2 (20,90)		
Abbreviation	eviation $r_{\rm ovc}$		$\delta r_{ m ovc}$	Azimuthal bins	Description	
TPC1	[0.90, 1.00]	0.10	0.005	180	Geometric TPC Model	
TPC2	[0.95, 1.00]	0.05	0.005	180	Geometric TPC Model	
TPC3	[0.80, 1.00]	0.20	0.005	180	Geometric TPC Model	
TPC4	[0.60, 1.00]	0.40	0.005	180	Geometric TPC Model	
TPC5	[1.00, 1.00]	0.00	0.005	180	Geometric TPC Model	
OG1	[0.95, 1.00]	0.05	0.005	180	Geometric OG Model	
OG2	[0.90, 0.90]	0.00	0.005	180	Geometric OG Model	
OG3	[1.00, 1.00]	0.00	0.005	180	Geometric OG Model	
PC1	[0.00, 1.00]	1.00	0.005	180	Geometric PC Model	
PC2	[0.00, 1.00]	1.00	0.005	180	Radiation PSPC Model	

Radio Beam Geometry

Gamma-ray Space Telescope

Light Curve Calculation

E.g. TPC & OG, α = 30°

E.g. TPC & OG, α = 70°, 80°

E.g. PSPC, α **= 40**°

PSR J0030+0451

PSR J0218+4232

PSR J0437-4715

PSR J0613-0200

PSR J0751+1807

PSR J1614+2230

PSR J1744-1134

PSR J2124-3358

PSR J0034-0534

Fits of α and ζ

Name	$lpha_{ ext{TPC}}$ (°)	$\zeta_{ ext{TPC}}(^{\circ})$	$lpha_{ m OG}$ (°)	$\zeta_{ m OG}$ (°)	$lpha_{ m PSPC}$ (°)	$\zeta_{ m PSPC}$ (°)	$lpha_{ m radio}$ (°)	$\zeta_{ m radio}$ (°)
J0030+0451	70	80	80	70			~ 62	~ 72
J0218+4232	60	60	50	70			~ 8	~ 90
J0437 - 4715	30	60	30	60			20 - 35	16 - 20
J0613-0200	30	60	30	60			small β	
J0751 + 1807	50	50	50	50				
J1614 - 2230	40	80	40	80				
J1744 - 1134					50	80		
J2124 - 3358	•••		•••	•••	40	80	20 - 60 (48)	27 - 80 (67)
J0034 –0534	30	70	30	70				

- Pulse shape + lag: outer magnetospheric (high-altitude) emission (OG / SG / unscreened PC)
 - Unexpected implication: screening / pair cascades
 - We need to find new ways of creating pairs in low-spindown magnetospheres (Compactness, Larger E_{||}, smaller ρ_c, larger B)
- Exclusive differentiation between PSPC vs. TPC / OG models
 - OG / SG: gamma trails radio with large lag
 - PSPC: radio has small lag w.r.t. gamma
- f_{Ω} : < 4 (~1); extended emission (wide beaming angle)
- Few radio-quiet MSPs expected: larger radio beam widths than for canonical pulsars
- Reasonable agreement with parameters inferred from MSP polarization measurements

- Using full acceleration models to study gamma-ray:
 - Spectra (phase-resolved & phase-averaged)
 - Luminosities / Efficiencies
 - Light curves
- Constrain electrodynamical quantities & B-field structure
- Population studies
- Compare Galactic Field and Globular Cluster MSP properties?

THANKS!

"He stretches out the north over empty space; He hangs the earth on nothing." (Job 26:7 NKJ)