Fermi observations of blazars and implication for the origin of gamma-rays:

the GeV breaks are produced by He II Lyman photons and the blazar zone lies inside high-ionization zone of the broad-line region

> Juri Poutanen University of Oulu, Finland Boris Stern

ASC Lebedev Physical Institute & INR, Moscow

Poutanen & Stern (2010, ApJL), Stern & Poutanen (2011, in preparation)

GeV breaks in FSRQ and LSP BL Lacs

Stability of breaks in 3C454.3

Break energy is constant \rightarrow atomic physics \rightarrow consistent with absorption by He II Lyman continuum.

Stability of breaks during flares

Break energy is constant \rightarrow atomic physics \rightarrow consistent with absorption by He II Lyman continuum.

Gamma-ray absorption by photon-photon pair production

BLR spectra

BLR spectra

GeV breaks in blazars

Power law + dual absorber (produced by H I and (produced by H I and He II Lyman He II Lyman recombination continua)

Poutanen & Stern (2010)

TeV-detected blazars

Senturk, Errando, et al., in preparation

The dips are consistent with being produced by He II Lyman recombination continuum.

There is no absorption by hydrogen Lyman photons !

TeV-detected blazars

4C + 21.35= PKS 1222+216 z=0.432

2.5 years from the life of 3C454.3

Spectra of 3C454.3

Spectra are well represented by a lognormal distribution (log-parabola) with two features due to photon-photon absorption by He II and H I "lines".

Spectral fits to 3C454.3

Interval	$Dates^{a}$	χ^2 /dof			
	MJD	Power-law	$PL + DA^b$	Lognormal	$Logn + DA^c$
А	54684-54759	84/12	7.7/10	37/11	7.7/9
В	54759-55034	34/12	8.4/10	16/11	7.3/9
С	55034-55159	65/12	6.8/10	16/11	3.7/9
D	55159-55199	81/12	6.7/10	14/11	2.9/9
E	55199-55284	63/12	40/10	4.4/11	4.4/9
F	55284-55344	112/12	23/10	27/11	17/9
G	55344-55514	72/12	17/10	13/11	7.5/9
н	55514-55534	176/12	23/10	25/11	7.6/9
I	55534-55594	115/12	20/10	18/11	8.4/9
1	55517-55522	79/12	18/10	11/11	5.9/9
A+C+E+G		315/12	33/10	42/11	9.0/9
D+F+I		435/12	42/10	61/11	20/9
All (A–I)	54684-55594	1099/12	85/10	129/11	23/9

Fits by a lognormal distribution with a double absorber are superior to any phenomenological model.

Spectral and opacity variations

Opacity in He II varies with flux → the gamma-ray emission region moves away from the black hole at high fluxes.

Motion of gamma-ray region

Moving away source at high flux is consistent with the arrival of >10 GeV photons in the end of the flare (Abdo et al. 2011).

Constraints on gamma-ray emission size

 The ratio of opacities due to He and H constrains the ionization parameter of the gamma-ray absorbing medium:

$$\tau_{\rm He}/\tau_{\rm H} \approx 1/4 \longrightarrow \log \xi > 2$$

For 3C 454.3, $L_{disk} \approx 10^{47} \text{ erg/s} \rightarrow$

$$R < 0.1 \text{ pc} = 10^3 R_{\text{Sch}}$$

UV spectra of FSRQs

The "size" of broad-line region

High-ionization lines (e.g. He II 1640) are produced 10 times closer than the Balmer lines and 5 times closer than C IV 1549.

BLR structure

The "size" of broad-line region

However, Kaspi et al. (2007) write: "no Lyα variability is detected...". Lyα has to be produced further away than CIV.

Opacity depends on compactness! Not luminosity.

The optical depth for pair production on line photons:

$$\tau_{T} = N_{ph} \sigma_{T} = \frac{L}{4\pi R^{2} c} \frac{1}{E_{\text{line}}} R \sigma_{T} = 35 \frac{L_{45}}{R_{pc}} \frac{10 \text{eV}}{E_{\text{line}}}$$

Weak high-ionization lines can be more important than strong low-ionization lines!

Assuming that all lines are produced at the same distance strongly underestimates the GeV opacity due to highionization line and strongly overestimates the opacity due to low-ionization lines.

Sub-TeV photon opacity is much lower than often assumed!

Conclusions

- GeV breaks are consistent with being produced by absorption on He II and H I recombination continua.
- Gamma-ray emitting region in 3C454.3 lies within the highest ionization zone of BLR at sub-parsec distances from the central black hole.
- This implies that the jet is accelerated to relativistic velocities at these distances.
- Additional features in a sub-GeV range are predicted due to the high-ionization soft X-ray lines.
- The underlying continuum does not have a break, but is well represented by a lognormal distribution.
- Opacity in He II varies with flux. The gamma-ray emission region moves away from the high-ionization region at high fluxes.