

Planck-Swift and Fermi simultaneous observations of blazars

- A multi-selection sample-oriented approach -

Paolo Giommi ASDC, Agenzia Spaziale Italiana

On behalf of many collaborators

Planck early results: Planck, Swift and Fermi simultaneous observations of X and γ -ray selected blazars

P. Giommi¹, G. Polenta^{1,2}, A Lähteenmäki³, D.J. Thompson⁴,
M. Capalbi¹, S. Cutin¹, D. Gasparrin¹, J. Gonzalez-Nuevo⁹, J. Leon-Tavares³, M. Lopez-Caniego²¹,
M.N. Mazziotta¹⁶, C. Monte^{16,18}, M. Perri¹, S. Rainò^{16,18}, G. Tosti^{32,33}, A. Tramacere³⁴, F. Verrecchia¹,
H. F. Aller⁶, M. F. Aller⁶, E. Angelakis⁵, D. Bastieri^{38,39}, A. Berdyugin⁷, A. Bonaldi⁸, L. Bonavera⁹, F. R. Bouchet⁴⁴,
S. Buson³⁹, C. Burigana¹⁰, D.N. Burrows¹¹, E. Cavazzuti¹, G. Chincarini^{12,13}, S. Colafrancesco^{2,14}, L. Costamante²²,
F. Cuttaia¹⁰, F. D'Ammando³⁷, G. De Zotti⁸, M. Frailis¹⁵, L. Fuhrmann⁵, S. Galeotta¹⁵, F. Gargano¹⁶, N. Gehrels¹⁷,
N. Giglietto^{16,18}, F. Giordano^{16,18}, M. Giroletti⁵⁰, E. Keihänen¹⁹, O. King²⁰, T.P. Krichbaum⁵, A. Lasenby^{41,40},
N. Lavonen³, C. Leto¹, E. Lindfors⁷, M. Massardi⁸, W. Max-Moerbeck²⁰, P.F. Michelson²², M. Mingaliev²³,
P. Natoli^{24,25,1}, I. Nestoras⁵, E. Nieppola^{3,26}, K. Nilsson⁷, B. Partridge²⁷, V. Pavlidou²⁰, T. J. Pearson^{55,49},
P. Procopio¹⁰, J.-L. Puget⁵⁷, J.P. Rachen²⁸, A. Readhead²⁰, R. Reeves²⁰, A. Reimer^{29,22}, R. Reinthal⁷, S. Ricciardi¹⁰,
J. Richards²⁰, D. Riquelme³⁰, J. Saarinen⁷, A. Sajina²⁷, M. Sandri¹⁰, P. Savolainen³, A. Sievers³⁰, A. Sillanpää⁷,
Y. Sotnikova²³, M. Stevenson²⁰, G. Tagliaferri¹³, L. Takalo⁷, J. Tammi³, D. Tavagnacco¹⁵, L. Terenzi¹⁰, L. Toffolatti³¹,
M. Tornikoski³, C. Trigilio³⁵, M. Turunen³, G. Umana³⁵, H. Ungerechts³⁰, F. Villa¹⁰, J. Wu³⁶, A. Zacchei¹⁵,

To be submitted soon Significant improvement compared to Abdo et al. 2010, ApJ, 716, 30 (Quasi simultaneous SED of 48 Fermi bright blazars)

- Large number of sources:
 - 175 blazars observed by Swift when they were in the FOV of Planck: ~160 Swift ToOs
- Truly simultaneous Planck Swift Fermi + ground data,
- Multi selection approach. Four flux limited samples.
 - Soft X-ray,
 - Hard X-ray,
 - γ-ray (TS + Flux limited)
 - Radio
- Fermi-LAT integrations:
 - simultaneous (~1week),
 - 2 months,
 - 27 months

Sample	Selection band	No. of sources	Blazars FS/BL/Unc.	
RASS	Soft X-ray	43	15/16/11	
BAT	Hard X-ray	34	21/7/6	
Fermi-LAT *	γ-ray	50	28/16/6	
Fermi-LAT FL**	γ-ray	40	27/8/5	
Total this paper	- 22	105	52/32/20	
Radio	radio	104	73/18/10	

* Total Fermi-LAT sample (TS limited),

** Flux limited Fermi-LAT sample $F(E > 100 MeV) > 8 \times 10^{-8}$ ph cm⁻² s⁻¹

Fig. 17.— The SED of 0FGL J1248.7+5811 = PG 1246+586 (left) and of 0FGL J1229.1+0202 = 3C273 (right)

P. Giommi, G. Polenta, et al.: Planck, Swift, and Fermi simultaneous observations of blazars

Fig. 34. The SED of PKS0426-380 (J0428–3756, left side) and of \$(10433+0521, right side). Simultaneous data are shown in red; quasisimultaneous data, i.e. *Fermi* data integrated over 2 months, *Planet* ERCSC and non-simultaneous ground based observations are shown in green; *Fermi* data integrated over 27 months are shown in blue; literature of archival data are shown in light gray.

Fig. 35. The SED of PKS0454-234 (left side) and of PKS0521-36 (right side). Simultaneous data are shown in red; quasi-simultaneous data, i.e. *Fermi* data integrated over 2 months, *Planck* ERCSC and non-simultaneous ground based observations are shown in green; *Fermi* data integrated over 27 months are shown in blue; literature or archival data are shown in light gray.

Fig. 36. The SED of PKS0528+134 (J0530+1331, left side) and of PKS0537-441 (0538-4405, right side). Simultaneous data are shown in red; quasi-simultaneous data, i.e. *Fermi* data integrated over 2 months, *Planck* ERCSC and non-simultaneous ground based observations are shown in green; *Fermi* data integrated over 27 months are shown in blue; literature or archival data are shown in light gray.

Measured from the 48 SEDs using 3rd degree polynomial functions

Measured from the 48 SEDs using 3rd degree polynomial functions

Summary of γ-ray detections (TS > 25) in 27 month Fermi-LAT data.

Sample	No. of detected sources				
	FSRQs	BL Lacs	Uncertain		
Fermi-LAT	28 (100%)	14 (100%)	8 (100%)		
Swift-BAT	17 (63%)	7 (100%)	3 (50%)		
Rosat/RASS	8 (53%)	14 (88%)	2 (17%)		
Radio	48 (72%)	16 (100%)	9 (64%)		

Separating jet emission from other types of radiation

The importance of simultaneity

The importance of simultaneity

The importance of simultaneity

v_{Break}	n. of frequency	Class	n. of sources LF	$\langle \alpha_{LF} \rangle$	σ_{LF}	n. of sources HF	$\langle \alpha_{HF} \rangle$	σ_{HF}
30	3	ALL	47	0.00 ± 0.04	0.27	69	-0.51 ± 0.04	0.30
30	5	ALL	46	0.00 ± 0.04	0.27	57	-0.49 ± 0.03	0.26
44	3	ALL	47	-0.02 ± 0.04	0.25	66	-0.64 ± 0.03	0.26
44	5	ALL	47	-0.02 ± 0.04	0.25	47	-0.62 ± 0.03	0.22
70	3	ALL	63	-0.08 ± 0.03	0.28	66	-0.67 ± 0.03	0.28
70	5	ALL	47	-0.02 ± 0.04	0.25	35	-0.65 ± 0.04	0.22
100	3	ALL	65	-0.11 ± 0.03	0.27	48	-0.56 ± 0.04	0.26
100	5	ALL	47	-0.02 ± 0.04	0.24	15	-0.52 ± 0.05	0.19
70	3	FSRQ	39	-0.11 ± 0.04	0.28	40	-0.73 ± 0.04	0.27
70	3	BL Lac	12	-0.08 ± 0.08	0.29	14	-0.51 ± 0.07	0.27
70	3	Unc. Type	12	-0.02 ± 0.08	0.29	12	-0.64 ± 0.07	0.25

The Compton dominance

Fig. 10. The SED of the blazar PKS0003-066 as an example of estimation of the upper limits on $\nu_{\text{peak}}^{\text{IC}}$ and on $\nu_{\text{peak}}^{\text{IC}} F(\nu_{\text{peak}}^{\text{IC}})$ combining the X-ray data with the 27 month *Fermi*-LAT upper limits.

Testing the simplest scenario: homogeneous SSC

Abdo et al. 2010, ApJ, 716, 30

The blazar sequence

Conclusions-1

- Selection effects play a crucial role in sample composition and induce heavy biases on parameters estimation:
 - **Controlling biases is mandatory to understand blazars as a population**
- Almost all BL Lacs have been detected while 30-40% of FSRQs are undetected by Fermi after 27 months
- The radio-mm spectral slope of blazars is $\alpha \sim 0$ up to 70 GHz then $<\alpha>=0.73$ for FSRQs and $<\alpha>=0.51$
- Contamination from accretion/disk radiation is important in a significant fraction of FSRQs
- The use of simultaneous data removes variations of up to a factor of ~2 in radio and ~10 or more in X-ray and Y-ray data.

Conclusions-2

- The distribution of synchrotron peak energy is the same in all FSRQs samples $\langle v_{\text{peak}}^{\text{S}} \rangle \approx 10^{13.1 \pm 0.1} \text{ Hz}$
- BL Lacs show higher peak energies with a distribution heavily dependent on the selection method.
- Simple SSC models cannot explain the observed SEDs of most Y-ray detected blazars, the 30/40% of blazars not detected by Fermi-LAT are likely consistent with simple SSC.
- Our data Challenge the blazar sequence