
[]

On the IGMF strength and filling factor

Sergey Ostapchenko (NTNU)

3rd Fermi Symposium, May 9-12 2011, Rome

in collaboration with K. Dolag, M. Kachelriess, and R. Tomas

arXive:1009.1782



Intergalactic Magnetic Field

magnetic fields in galaxies/galaxy clusters:
from amplification of (much weaker) seed fields



Intergalactic Magnetic Field

magnetic fields in galaxies/galaxy clusters:
from amplification of (much weaker) seed fields

initial seed fields

created in the early universe (e.g. during phase transitions)

or created by early starburst galaxies/AGNs

or created by recent AGNs (and concentrated in filaments)



Intergalactic Magnetic Field

magnetic fields in galaxies/galaxy clusters:
from amplification of (much weaker) seed fields

initial seed fields

created in the early universe (e.g. during phase transitions)

or created by early starburst galaxies/AGNs

or created by recent AGNs (and concentrated in filaments)

only weak upper limits exist from Faraday RM



Intergalactic Magnetic Field

magnetic fields in galaxies/galaxy clusters:
from amplification of (much weaker) seed fields

initial seed fields

created in the early universe (e.g. during phase transitions)

or created by early starburst galaxies/AGNs

or created by recent AGNs (and concentrated in filaments)

only weak upper limits exist from Faraday RM

alternative way – studies of TeV γ-rays:

delayed “echoes” of γ-ray flares (Plaga 1995)

formation of γ-ray “halos” around point-like sources
(Aharonian, Coppi & Völk 1994)



Intergalactic Magnetic Field

magnetic fields in galaxies/galaxy clusters:
from amplification of (much weaker) seed fields

initial seed fields

created in the early universe (e.g. during phase transitions)

or created by early starburst galaxies/AGNs

or created by recent AGNs (and concentrated in filaments)

only weak upper limits exist from Faraday RM

alternative way – studies of TeV γ-rays:

delayed “echoes” of γ-ray flares (Plaga 1995)

formation of γ-ray “halos” around point-like sources
(Aharonian, Coppi & Völk 1994)

new: limits on IGMF from non-observation of GeV γ-rays from
TeV blazars (Neronov & Vovk 2010; Tavecchio et al. 2010)



Limits on IGMF from GeV-TeV observations of blazars

limits on the strength of IGMF from GeV-silent TeV blazars
(Neronov & Vovk 2010; Tavecchio et al. 2010)

TeV γ-rays pair-produce on EBL photons ⇒ e/m cascades

results in significant fluxes of secondary γ in the GeV range

stationary sources at large z, with hard TeV spectrum and low
intrinsic GeV spectrum (e.g. 1ES 0229+200):
cascade γ-s should be observable with Fermi-LAT



Limits on IGMF from GeV-TeV observations of blazars

limits on the strength of IGMF from GeV-silent TeV blazars
(Neronov & Vovk 2010; Tavecchio et al. 2010)

TeV γ-rays pair-produce on EBL photons ⇒ e/m cascades

results in significant fluxes of secondary γ in the GeV range

stationary sources at large z, with hard TeV spectrum and low
intrinsic GeV spectrum (e.g. 1ES 0229+200):
cascade γ-s should be observable with Fermi-LAT

non-observation of GeV γ-rays ⇒ cascade deflections by IGMF

⇒ allows to get limits on the IGMF strength: B & 10−15 G



Limits on IGMF from GeV-TeV observations of blazars

limits on the strength of IGMF from GeV-silent TeV blazars
(Neronov & Vovk 2010; Tavecchio et al. 2010)

TeV γ-rays pair-produce on EBL photons ⇒ e/m cascades

results in significant fluxes of secondary γ in the GeV range

stationary sources at large z, with hard TeV spectrum and low
intrinsic GeV spectrum (e.g. 1ES 0229+200):
cascade γ-s should be observable with Fermi-LAT

non-observation of GeV γ-rays ⇒ cascade deflections by IGMF

⇒ allows to get limits on the IGMF strength: B & 10−15 G

open questions:

potential source variability?

impact of IGMF spacial structure
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synchrotron energy loss for e±

(1+1)-dimensional treatment

production angles neglected

deflection in IGMF accounted for (small angle approximation)

weighted sampling applied

produced particle kept with probability zαw
E (0 < αw ≤ 1)

each particle is “representative” – has a weight factor w

produced particle weight: wd = wp/zαw
E

highly efficient: ∼ 103 cascades/s over cosmological distances
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⇒ ϑobs≃ ϑdefl x/L
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γ produced close to the source ⇒ smaller ϑobs

time delay: ∆τ ≃ 2x/c (1− x/L)ϑ2
defl

same importance of fluctuations of x as for ϑobs

additionally: fluctuations of ∆xe (〈∆xe〉 = lcool)
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Case of 1ES 0229+200: assumptions

same assumptions on the source as in Tavecchio et al. 2010

injection spectrum F ∝ E−2/3 with cutoff at Emax = 20 TeV

low Lorentz factor: Γ = 10 ⇒ Θjet = 6o

jet pointing towards the observer

Fermi-LAT upper limits on GeV γ-s from Tavecchio et al. 2010

account for γ-rays within the PSF of the Fermi-LAT
(ϑ95 ≃ 1.68o(E/GeV)−0.77+0.2o exp(−10GeV/E))

EBL “best-fit” model from Kneiske & Dole 2010
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different spectral shape

e.g. spectral ’shoulder’ in the TeV range for Emax = 20 TeV
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what if the field is concentrated in filaments
while being absent/very weak in voids?

check with “top-hat” profile, with D = 10 Mpc between peaks

if the field in “filaments” sufficiently strong ⇒ 2 possible cases
(since D ≪ lγγb, lcool ≪ (1− f )D)

S Oγ e γ
with probability (1− f ),
e± produced in a “void”

⇒ final γ goes straight

⇒ observed flux = (1− f )×flux(B = 0)

multi-step cascade: observed flux ∼ (1− f )N ×flux(B = 0)
(all N electrons in a cascade branch propagate in voids)

⇒ lower limit on the “filling factor” – from higher Emax
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no B-dependence
for B & 5·10−15 G

similar results when using realistic B-profiles from cosmological
MHD simulations (Dolag et al., arXive:1009.1782)
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similar results obtained by Taylor et al. 2011
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mean travel distance 〈∆xe〉 of a parent e±

is defined by the cooling length
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however, the distribution of ∆xe

has pronounced tails towards ∆xe ∼ 1 kpc
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