

 magnetic fields in galaxies/galaxy clusters: from amplification of (much weaker) seed fields

- magnetic fields in galaxies/galaxy clusters: from amplification of (much weaker) seed fields
- initial seed fields
 - created in the early universe (e.g. during phase transitions)
 - or created by early starburst galaxies/AGNs
 - or created by recent AGNs (and concentrated in filaments)

- magnetic fields in galaxies/galaxy clusters: from amplification of (much weaker) seed fields
- initial seed fields
 - created in the early universe (e.g. during phase transitions)
 - or created by early starburst galaxies/AGNs
 - or created by recent AGNs (and concentrated in filaments)
- only weak upper limits exist from Faraday RM

- magnetic fields in galaxies/galaxy clusters: from amplification of (much weaker) seed fields
- initial seed fields
 - created in the early universe (e.g. during phase transitions)
 - or created by early starburst galaxies/AGNs
 - or created by recent AGNs (and concentrated in filaments)
- only weak upper limits exist from Faraday RM
- alternative way studies of TeV γ-rays:
 - delayed "echoes" of γ-ray flares (Plaga 1995)
 - formation of γ-ray "halos" around point-like sources (Aharonian, Coppi & Völk 1994)

- magnetic fields in galaxies/galaxy clusters: from amplification of (much weaker) seed fields
- initial seed fields
 - created in the early universe (e.g. during phase transitions)
 - or created by early starburst galaxies/AGNs
 - or created by recent AGNs (and concentrated in filaments)
- only weak upper limits exist from Faraday RM
- alternative way studies of TeV γ-rays:
 - delayed "echoes" of γ-ray flares (Plaga 1995)
 - formation of γ-ray "halos" around point-like sources (Aharonian, Coppi & Völk 1994)
- new: limits on IGMF from non-observation of GeV γ-rays from TeV blazars (Neronov & Vovk 2010; Tavecchio et al. 2010)

Limits on IGMF from GeV-TeV observations of blazars

- limits on the strength of IGMF from GeV-silent TeV blazars (Neronov & Vovk 2010; Tavecchio et al. 2010)
 - TeV $\gamma\text{-rays}$ pair-produce on EBL photons \Rightarrow e/m cascades
 - results in significant fluxes of secondary γ in the GeV range
 - stationary sources at large z, with hard TeV spectrum and low intrinsic GeV spectrum (e.g. 1ES 0229+200): cascade γ-s should be observable with Fermi-LAT

(4回) (三) (三)

Limits on IGMF from GeV-TeV observations of blazars

- limits on the strength of IGMF from GeV-silent TeV blazars (Neronov & Vovk 2010; Tavecchio et al. 2010)
 - TeV $\gamma\text{-rays}$ pair-produce on EBL photons \Rightarrow e/m cascades
 - $\bullet\,$ results in significant fluxes of secondary γ in the GeV range
 - stationary sources at large z, with hard TeV spectrum and low intrinsic GeV spectrum (e.g. 1ES 0229+200): cascade γ-s should be observable with Fermi-LAT

・ロト ・同ト ・ヨト ・ヨト

- non-observation of GeV γ -rays \Rightarrow cascade deflections by IGMF
- \Rightarrow allows to get limits on the IGMF strength: $B\gtrsim 10^{-15}$ G

Limits on IGMF from GeV-TeV observations of blazars

- limits on the strength of IGMF from GeV-silent TeV blazars (Neronov & Vovk 2010; Tavecchio et al. 2010)
 - TeV $\gamma\text{-rays}$ pair-produce on EBL photons \Rightarrow e/m cascades
 - $\bullet\,$ results in significant fluxes of secondary γ in the GeV range
 - stationary sources at large z, with hard TeV spectrum and low intrinsic GeV spectrum (e.g. 1ES 0229+200): cascade γ-s should be observable with Fermi-LAT

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

- non-observation of GeV $\gamma\text{-rays}$ \Rightarrow cascade deflections by IGMF
- \Rightarrow allows to get limits on the IGMF strength: $B\gtrsim 10^{-15}$ G
- open questions:
 - o potential source variability?
 - impact of IGMF spacial structure

• e/m cascade on background photons:

• pair production: $\gamma\gamma_b \rightarrow e^+ e^-$

• ICS:
$$e^{\pm} \gamma_b \rightarrow e^{\pm} \gamma$$

 ${\, \bullet \,}$ synchrotron energy loss for e^\pm

<ロ> (四) (四) (三) (三) (三)

- e/m cascade on background photons:
 - pair production: $\gamma \gamma_b \rightarrow e^+ e^-$
 - ICS: $e^{\pm} \gamma_b \rightarrow e^{\pm} \gamma$
 - synchrotron energy loss for e^\pm
- (1+1)-dimensional treatment
 - production angles neglected
 - deflection in IGMF accounted for (small angle approximation)

- e/m cascade on background photons:
 - pair production: $\gamma \gamma_b \rightarrow e^+ e^-$
 - ICS: $e^{\pm} \gamma_b \rightarrow e^{\pm} \gamma$
 - synchrotron energy loss for e^\pm
- (1+1)-dimensional treatment
 - production angles neglected
 - deflection in IGMF accounted for (small angle approximation)
- weighted sampling applied
 - produced particle kept with probability $z_E^{\alpha_w}$ $(0 < \alpha_w \leq 1)$
 - each particle is "representative" has a weight factor w
 - produced particle weight: $w_{\rm d} = w_{\rm p}/z_E^{\alpha_w}$

- e/m cascade on background photons:
 - pair production: $\gamma \gamma_b \rightarrow e^+ e^-$
 - ICS: $e^{\pm} \gamma_b \rightarrow e^{\pm} \gamma$
 - synchrotron energy loss for e^\pm
- (1+1)-dimensional treatment
 - production angles neglected
 - deflection in IGMF accounted for (small angle approximation)
- weighted sampling applied
 - produced particle kept with probability $z_E^{\alpha_w}$ $(0 < \alpha_w \leq 1)$
 - each particle is "representative" has a weight factor w
 - produced particle weight: $w_{\rm d} = w_{\rm p}/z_E^{\alpha_w}$
- highly efficient: $\sim 10^3$ cascades/s over cosmological distances

• simple for 2-step process: $\gamma \rightarrow e^{\pm} \rightarrow \gamma$

• simple for 2-step process: $\gamma \mathop{\rightarrow} e^\pm \mathop{\rightarrow} \gamma$

• $\beta \equiv \vartheta_{defl}$ - defl. angle • $\vartheta \equiv \vartheta_{obs}$ - obs. angle • $\beta = \alpha + \vartheta$

•
$$\Rightarrow \vartheta_{\text{obs}} \simeq \vartheta_{\text{defl}} x/L$$

A B > A B >

• simple for 2-step process: $\gamma \mathop{\rightarrow} e^\pm \mathop{\rightarrow} \gamma$

• NB: though $\langle x \rangle = l_{\gamma\gamma_b}$ (m.f.p.), fluctuations are very important

◆□ > ◆□ > ◆臣 > ◆臣 >

• γ produced close to the source \Rightarrow smaller ϑ_{obs}

• simple for 2-step process: $\gamma \mathop{\rightarrow} e^\pm \mathop{\rightarrow} \gamma$

• NB: though $\langle x \rangle = l_{\gamma\gamma_b}$ (m.f.p.), fluctuations are very important

◆□ > ◆□ > ◆臣 > ◆臣 >

• γ produced close to the source \Rightarrow smaller ϑ_{obs}

• simple for 2-step process: $\gamma \rightarrow e^{\pm} \rightarrow \gamma$

• NB: though $\langle x \rangle = l_{\gamma\gamma_b}$ (m.f.p.), fluctuations are very important

• γ produced close to the source \Rightarrow smaller ϑ_{obs}

• time delay: $\Delta \tau \simeq 2x/c (1-x/L) \vartheta_{\text{defl}}^2$

• same importance of fluctuations of x as for ϑ_{obs}

• simple for 2-step process: $\gamma \rightarrow e^{\pm} \rightarrow \gamma$

• NB: though $\langle x \rangle = l_{\gamma\gamma_b}$ (m.f.p.), fluctuations are very important

・ロン ・回 と ・ヨ ・ ・ヨ ・

• γ produced close to the source \Rightarrow smaller ϑ_{obs}

• time delay: $\Delta \tau \simeq 2x/c \left(1 - x/L\right) \vartheta_{\text{defl}}^2$

• same importance of fluctuations of x as for ϑ_{obs}

• simple for 2-step process: $\gamma \mathop{\rightarrow} e^\pm \mathop{\rightarrow} \gamma$

• NB: though $\langle x \rangle = l_{\gamma\gamma_b}$ (m.f.p.), fluctuations are very important

• γ produced close to the source \Rightarrow smaller ϑ_{obs}

• time delay: $\Delta \tau \simeq 2x/c \left(1-x/L\right) \vartheta_{\text{defl}}^2$

• same importance of fluctuations of x as for ϑ_{obs}

• additionally: fluctuations of Δx_e ($\langle \Delta x_e \rangle = l_{cool}$)

• similarly for multi-step cascades: $\gamma \rightarrow e^{\pm} \rightarrow \cdots \rightarrow e^{\pm} \rightarrow \gamma$

A (1) > A (1) > A

• similarly for multi-step cascades: $\gamma \rightarrow e^{\pm} \rightarrow \cdots \rightarrow e^{\pm} \rightarrow \gamma$

• deflection angle – within small angle approximation:

- $\vartheta_{\text{defl}} \equiv \beta = \sqrt{\sum_{i=1}^N \beta_{e_i}^2} (N \text{numb. of } e^{\pm} \text{ in the cascade branch})$
- deflection of the last e^{\pm} in the cascade most important (largest *x*, smallest energy: $\vartheta_{\text{defl}} \sim l_{\text{cool}}/R_{\text{L}} \propto E_e^{-2}$)
- $\beta_{e_i} \sim \Delta x_i$, Δx_i pass of *i*-th e^{\pm} from its creation till γ emission

• if
$$\Delta x_i \gg L_{\rm coh} \Rightarrow \beta_{e_i} \sim \sqrt{\Delta x_i}$$

• similarly for multi-step cascades: $\gamma \rightarrow e^{\pm} \rightarrow \cdots \rightarrow e^{\pm} \rightarrow \gamma$

• deflection angle – within small angle approximation:

- $\vartheta_{\text{defl}} \equiv \beta = \sqrt{\sum_{i=1}^{N} \beta_{e_i}^2} (N \text{numb. of } e^{\pm} \text{ in the cascade branch})$
- deflection of the last e^{\pm} in the cascade most important (largest *x*, smallest energy: $\vartheta_{\text{defl}} \sim l_{\text{cool}}/R_{\text{L}} \propto E_e^{-2}$)
- $\beta_{e_i} \sim \Delta x_i$, Δx_i pass of *i*-th e^{\pm} from its creation till γ emission

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

• if
$$\Delta x_i \gg L_{
m coh} \Rightarrow eta_{e_i} \sim \sqrt{\Delta x_i}$$

• similarly for multi-step cascades: $\gamma \rightarrow e^{\pm} \rightarrow \cdots \rightarrow e^{\pm} \rightarrow \gamma$

• deflection angle – within small angle approximation:

- $\vartheta_{\text{defl}} \equiv \beta = \sqrt{\sum_{i=1}^N \beta_{e_i}^2} (N \text{numb. of } e^{\pm} \text{ in the cascade branch})$
- deflection of the last e^{\pm} in the cascade most important (largest *x*, smallest energy: $\vartheta_{\text{defl}} \sim l_{\text{cool}}/R_{\text{L}} \propto E_e^{-2}$)
- $\beta_{e_i} \sim \Delta x_i$, Δx_i pass of *i*-th e^{\pm} from its creation till γ emission

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

• if
$$\Delta x_i \gg L_{\rm coh} \Rightarrow \beta_{e_i} \sim \sqrt{\Delta x_i}$$

• similarly for multi-step cascades: $\gamma \rightarrow e^{\pm} \rightarrow \cdots \rightarrow e^{\pm} \rightarrow \gamma$

• deflection angle – within small angle approximation:

- $\vartheta_{\text{defl}} \equiv \beta = \sqrt{\sum_{i=1}^N \beta_{e_i}^2} (N \text{numb. of } e^{\pm} \text{ in the cascade branch})$
- deflection of the last e^{\pm} in the cascade most important (largest *x*, smallest energy: $\vartheta_{\text{defl}} \sim l_{\text{cool}}/R_{\text{L}} \propto E_e^{-2}$)
- $\beta_{e_i} \sim \Delta x_i$, Δx_i pass of *i*-th e^{\pm} from its creation till γ emission

• if $\Delta x_i \gg L_{\rm coh} \Rightarrow \beta_{e_i} \sim \sqrt{\Delta x_i}$

- injection spectrum $\mathcal{F} \propto E^{-2/3}$ with cutoff at $E_{\text{max}} = 20$ TeV
- low Lorentz factor: $\Gamma=10 \Rightarrow \Theta_{\text{jet}}=6^o$
- jet pointing towards the observer

- injection spectrum $\mathcal{F} \propto E^{-2/3}$ with cutoff at $E_{\text{max}} = 20 \text{ TeV}$
- low Lorentz factor: $\Gamma=10 \Rightarrow \Theta_{jet}=6^o$
- jet pointing towards the observer

- injection spectrum $\mathcal{F} \propto E^{-2/3}$ with cutoff at $E_{\text{max}} = 20$ TeV
- low Lorentz factor: $\Gamma = 10 \Rightarrow \Theta_{\text{jet}} = 6^{\circ}$
- jet pointing towards the observer

- injection spectrum $\mathcal{F} \propto E^{-2/3}$ with cutoff at $E_{\text{max}} = 20$ TeV
- low Lorentz factor: $\Gamma=10 \Rightarrow \Theta_{jet}=6^o$
- jet pointing towards the observer

- injection spectrum $\mathcal{F} \propto E^{-2/3}$ with cutoff at $E_{\text{max}} = 20$ TeV
- low Lorentz factor: $\Gamma=10 \Rightarrow \Theta_{\text{jet}}=6^o$
- jet pointing towards the observer
- Fermi-LAT upper limits on GeV γ-s from Tavecchio et al. 2010

same assumptions on the source as in Tavecchio et al. 2010

- injection spectrum $\mathcal{F} \propto E^{-2/3}$ with cutoff at $E_{\text{max}} = 20$ TeV
- low Lorentz factor: $\Gamma = 10 \Rightarrow \Theta_{jet} = 6^{o}$
- jet pointing towards the observer
- Fermi-LAT upper limits on GeV γ-s from Tavecchio et al. 2010

• account for γ -rays within the PSF of the Fermi-LAT $(\vartheta_{95} \simeq 1.68^{\circ} (E/\text{GeV})^{-0.77} + 0.2^{\circ} \exp(-10 \,\text{GeV}/E))$

- injection spectrum $\mathcal{F} \propto E^{-2/3}$ with cutoff at $E_{\text{max}} = 20$ TeV
- low Lorentz factor: $\Gamma = 10 \Rightarrow \Theta_{\text{jet}} = 6^{\circ}$
- jet pointing towards the observer
- Fermi-LAT upper limits on GeV γ-s from Tavecchio et al. 2010
- account for γ -rays within the PSF of the Fermi-LAT $(\vartheta_{95} \simeq 1.68^{\circ} (E/\text{GeV})^{-0.77} + 0.2^{\circ} \exp(-10 \,\text{GeV}/E))$
- EBL "best-fit" model from Kneiske & Dole 2010

 fluxes normalized to HESS data

•
$$E_{\rm max} = 20$$
 TeV:
above Fermi limits
for $B \lesssim 10^{-15}$ G

▲ □ > < □ >

- ∢ ≣ ▶

Case of 1ES 0229+200: γ -ray fluxes

results – consistent with Tavecchio et al. 2010

Case of 1ES 0229+200: γ -ray fluxes

- results consistent with Tavecchio et al. 2010
- different spectral shape

• e.g. spectral 'shoulder' in the TeV range for $E_{\text{max}} = 20 \text{ TeV}$

 what if the field is concentrated in filaments while being absent/very weak in voids?

- what if the field is concentrated in filaments while being absent/very weak in voids?
- check with "top-hat" profile, with D = 10 Mpc between peaks

@ ▶ 《 글 ▶ 《 글

- what if the field is concentrated in filaments while being absent/very weak in voids?
- check with "top-hat" profile, with D = 10 Mpc between peaks
- if the field in "filaments" sufficiently strong $\Rightarrow 2$ possible cases (since $D \ll l_{\gamma\gamma_b}$, $l_{cool} \ll (1-f)D$)

<ロ> (四) (四) (三) (三)

- what if the field is concentrated in filaments while being absent/very weak in voids?
- check with "top-hat" profile, with D = 10 Mpc between peaks
- if the field in "filaments" sufficiently strong \Rightarrow 2 possible cases (since $D \ll l_{\gamma\gamma_b}$, $l_{cool} \ll (1-f)D$)

- with probability f, e^{\pm} is inside a "filament"
 - final γ deflected away

- what if the field is concentrated in filaments while being absent/very weak in voids?
- check with "top-hat" profile, with D = 10 Mpc between peaks
- if the field in "filaments" sufficiently strong \Rightarrow 2 possible cases (since $D \ll l_{\gamma\gamma_b}$, $l_{cool} \ll (1-f)D$)

- with probability *f*, *e*[±] is inside a "filament"
 - final γ deflected away

- what if the field is concentrated in filaments while being absent/very weak in voids?
- check with "top-hat" profile, with D = 10 Mpc between peaks
- if the field in "filaments" sufficiently strong $\Rightarrow 2$ possible cases (since $D \ll l_{\gamma\gamma_b}$, $l_{cool} \ll (1-f)D$)

- what if the field is concentrated in filaments while being absent/very weak in voids?
- check with "top-hat" profile, with D = 10 Mpc between peaks
- if the field in "filaments" sufficiently strong $\Rightarrow 2$ possible cases (since $D \ll l_{\gamma\gamma_b}$, $l_{cool} \ll (1-f)D$)

• with probability (1-f), e^{\pm} produced in a "void"

•
$$\Rightarrow$$
 final γ goes straight

(日) (同) (三) (三)

- what if the field is concentrated in filaments while being absent/very weak in voids?
- check with "top-hat" profile, with D = 10 Mpc between peaks
- if the field in "filaments" sufficiently strong $\Rightarrow 2$ possible cases (since $D \ll l_{\gamma\gamma_b}$, $l_{cool} \ll (1-f)D$)

() < </p>

• \Rightarrow observed flux = $(1 - f) \times \text{flux}(B = 0)$

- what if the field is concentrated in filaments while being absent/very weak in voids?
- check with "top-hat" profile, with D = 10 Mpc between peaks
- if the field in "filaments" sufficiently strong $\Rightarrow 2$ possible cases (since $D \ll l_{\gamma\gamma_b}$, $l_{cool} \ll (1-f)D$)

- \Rightarrow observed flux = $(1 f) \times \text{flux}(B = 0)$
- multi-step cascade: observed flux $\sim (1-f)^N \times \text{flux}(B=0)$ (all N electrons in a cascade branch propagate in voids)

- what if the field is concentrated in filaments while being absent/very weak in voids?
- check with "top-hat" profile, with D = 10 Mpc between peaks
- if the field in "filaments" sufficiently strong $\Rightarrow 2$ possible cases (since $D \ll l_{\gamma\gamma_b}$, $l_{cool} \ll (1-f)D$)

• \Rightarrow observed flux = $(1 - f) \times \text{flux}(B = 0)$

- multi-step cascade: observed flux $\sim (1-f)^N \times \text{flux}(B=0)$ (all N electrons in a cascade branch propagate in voids)
- \Rightarrow lower limit on the "filling factor" from higher E_{max}

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 - の Q ()

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

 similar results when using realistic *B*-profiles from cosmological MHD simulations (Dolag et al., arXive:1009.1782)

- Dermer et al. 2010: time-variability of blazars may significantly weaken the limits on IGMF strength
 - case of 1ES 0229+200 reanalyzed
 - analytic treatment of time delays applied

(4回) (日) (日)

- Dermer et al. 2010: time-variability of blazars may significantly weaken the limits on IGMF strength
 - case of 1ES 0229+200 reanalyzed
 - analytic treatment of time delays applied

(4回) (日) (日)

- Dermer et al. 2010: time-variability of blazars may significantly weaken the limits on IGMF strength
 - case of 1ES 0229+200 reanalyzed
 - analytic treatment of time delays applied

(4回) (日) (日)

- Dermer et al. 2010: time-variability of blazars may significantly weaken the limits on IGMF strength
 - case of 1ES 0229+200 reanalyzed
 - analytic treatment of time delays applied

(4回) (日) (日)

- Dermer et al. 2010: time-variability of blazars may significantly weaken the limits on IGMF strength
 - case of 1ES 0229+200 reanalyzed
 - analytic treatment of time delays applied
 - $B_{\rm IGMF}\gtrsim 10^{-18}~{\rm G}~{\rm obtained}$
- reminding: $\Delta \tau \propto x_{\gamma} \vartheta_{\text{defl}}^2$
 - \Rightarrow fluctuations of x_{γ} and Δx_e are important ($\vartheta_{\text{defl}} \propto \Delta x_e$)

- Dermer et al. 2010: time-variability of blazars may significantly weaken the limits on IGMF strength
 - case of 1ES 0229+200 reanalyzed
 - analytic treatment of time delays applied
 - $B_{\rm IGMF}\gtrsim 10^{-18}~{\rm G}~{\rm obtained}$
- reminding: $\Delta \tau \propto x_{\gamma} \vartheta_{\text{defl}}^2$
 - \Rightarrow fluctuations of x_{γ} and Δx_e are important ($\vartheta_{\text{defl}} \propto \Delta x_e$)
- e^{\pm} emits photons over $l_{\rm cool} \Rightarrow \langle \Delta \tau \rangle \propto (l_{\rm cool}/R_{\rm L})^2 \propto E_e^{-4} \propto E_{\gamma}^{-2}$

- Dermer et al. 2010: time-variability of blazars may significantly weaken the limits on IGMF strength
 - case of 1ES 0229+200 reanalyzed
 - analytic treatment of time delays applied
 - $B_{\rm IGMF}\gtrsim 10^{-18}~{\rm G}~{\rm obtained}$
- reminding: $\Delta \tau \propto x_{\gamma} \vartheta_{\text{defl}}^2$
 - \Rightarrow fluctuations of x_{γ} and Δx_e are important $(\vartheta_{\text{defl}} \propto \Delta x_e)$
- e^{\pm} emits photons over $l_{\rm cool} \Rightarrow \langle \Delta \tau \rangle \propto (l_{\rm cool}/R_{\rm L})^2 \propto E_e^{-4} \propto E_{\gamma}^{-2}$
- however: first few photons emitted over $\Delta x_e \sim l_{e\gamma_b} \sim$ few kpc
 - \Rightarrow contribute to small $\Delta \tau$ ($\sim \langle \Delta \tau \rangle / 100$) for GeV γ -rays

- Dermer et al. 2010: time-variability of blazars may significantly weaken the limits on IGMF strength
 - case of 1ES 0229+200 reanalyzed
 - analytic treatment of time delays applied
 - $B_{\rm IGMF}\gtrsim 10^{-18}~{\rm G}~{\rm obtained}$
- reminding: $\Delta \tau \propto x_{\gamma} \vartheta_{\text{defl}}^2$
 - \Rightarrow fluctuations of x_{γ} and Δx_e are important $(\vartheta_{\text{defl}} \propto \Delta x_e)$
- e^{\pm} emits photons over $l_{\rm cool} \Rightarrow \langle \Delta \tau \rangle \propto (l_{\rm cool}/R_{\rm L})^2 \propto E_e^{-4} \propto E_{\gamma}^{-2}$
- however: first few photons emitted over $\Delta x_e \sim l_{e\gamma_b} \sim$ few kpc
 - \Rightarrow contribute to small $\Delta \tau ~(\sim \langle \Delta \tau \rangle /100)$ for GeV γ -rays

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の ヘ ()

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - のへで

個 と く ヨ と く ヨ と

similar results obtained by Taylor et al. 2011

limits on IGMF "filling factor": time-independence

• reminding: "filling factor" related to undeflected γ -ray flux: observed flux = $(1-f) \times \text{flux}(B=0)$ • reminding: "filling factor" related to undeflected γ -ray flux: observed flux = $(1-f)\times {\rm flux}(B=0)$

• \Rightarrow independent on the life time of the source

limits on IGMF "filling factor": time-independence

• reminding: "filling factor" related to undeflected γ -ray flux: observed flux = $(1-f) \times \text{flux}(B=0)$

ullet \Rightarrow independent on the life time of the source

 variability of the source impacts the limits on the IGMF strength, not on the IGMF spacial distribution

 γ-ray fluxes from 1ES 0229+200 calculated using MC treatment of e/m cascades on background photons
- γ-ray fluxes from 1ES 0229+200 calculated using MC treatment of e/m cascades on background photons
- Iimits on the IGMF strength and "filling factor" obtained
 - if the source is stable over $\gtrsim \text{few} \times 10^4$ yr: fields with $B \gtrsim O(10^{-15})$ G fill more than 60% of space
 - weaker limits on the IGMF strength if the source is variable: e.g. $B \gtrsim O(10^{-16} \div 10^{-17})$ G for $\tau_{\text{source}} \sim \text{few} \times (100 \div 1)$ yr

- γ-ray fluxes from 1ES 0229+200 calculated using MC treatment of e/m cascades on background photons
- 2 limits on the IGMF strength and "filling factor" obtained
 - if the source is stable over $\gtrsim \text{few} \times 10^4$ yr: fields with $B \gtrsim O(10^{-15})$ G fill more than 60% of space
 - weaker limits on the IGMF strength if the source is variable: e.g. $B \gtrsim O(10^{-16} \div 10^{-17})$ G for $\tau_{\text{source}} \sim \text{few} \times (100 \div 1)$ yr

- γ-ray fluxes from 1ES 0229+200 calculated using MC treatment of e/m cascades on background photons
- 2 limits on the IGMF strength and "filling factor" obtained
 - if the source is stable over $\gtrsim \text{few} \times 10^4$ yr: fields with $B \gtrsim O(10^{-15})$ G fill more than 60% of space
 - weaker limits on the IGMF strength if the source is variable: e.g. $B \gtrsim O(10^{-16} \div 10^{-17})$ G for $\tau_{\text{source}} \sim \text{few} \times (100 \div 1)$ yr

<ロ> (四) (四) (三) (三)

- γ-ray fluxes from 1ES 0229+200 calculated using MC treatment of e/m cascades on background photons
- Iimits on the IGMF strength and "filling factor" obtained
 - if the source is stable over $\gtrsim \text{few} \times 10^4$ yr: fields with $B \gtrsim O(10^{-15})$ G fill more than 60% of space
 - weaker limits on the IGMF strength if the source is variable: e.g. $B \gtrsim O(10^{-16} \div 10^{-17})$ G for $\tau_{\text{source}} \sim \text{few} \times (100 \div 1)$ yr
- Iimits on the IGMF "filling factor" independent of the source life time

- γ-ray fluxes from 1ES 0229+200 calculated using MC treatment of e/m cascades on background photons
- Iimits on the IGMF strength and "filling factor" obtained
 - if the source is stable over $\gtrsim \text{few} \times 10^4$ yr: fields with $B \gtrsim O(10^{-15})$ G fill more than 60% of space
 - weaker limits on the IGMF strength if the source is variable: e.g. $B \gtrsim O(10^{-16} \div 10^{-17})$ G for $\tau_{\text{source}} \sim \text{few} \times (100 \div 1)$ yr
- Iimits on the IGMF "filling factor" independent of the source life time
- \odot \Rightarrow strong constraints on the origin of magnetic seed fields
 - volume filling process (e.g. primordial) strongly favored
 - otherwise: very efficient transport process is required

- γ-ray fluxes from 1ES 0229+200 calculated using MC treatment of e/m cascades on background photons
- Iimits on the IGMF strength and "filling factor" obtained
 - if the source is stable over $\gtrsim \text{few} \times 10^4$ yr: fields with $B \gtrsim O(10^{-15})$ G fill more than 60% of space
 - weaker limits on the IGMF strength if the source is variable: e.g. $B \gtrsim O(10^{-16} \div 10^{-17})$ G for $\tau_{\text{source}} \sim \text{few} \times (100 \div 1)$ yr
- Iimits on the IGMF "filling factor" independent of the source life time
- \bigcirc \Rightarrow strong constraints on the origin of magnetic seed fields
 - volume filling process (e.g. primordial) strongly favored
 - otherwise: very efficient transport process is required

- γ-ray fluxes from 1ES 0229+200 calculated using MC treatment of e/m cascades on background photons
- Iimits on the IGMF strength and "filling factor" obtained
 - if the source is stable over $\gtrsim \text{few} \times 10^4$ yr: fields with $B \gtrsim O(10^{-15})$ G fill more than 60% of space
 - weaker limits on the IGMF strength if the source is variable: e.g. $B \gtrsim O(10^{-16} \div 10^{-17})$ G for $\tau_{\text{source}} \sim \text{few} \times (100 \div 1)$ yr
- Iimits on the IGMF "filling factor" independent of the source life time
- \bigcirc \Rightarrow strong constraints on the origin of magnetic seed fields
 - volume filling process (e.g. primordial) strongly favored
 - otherwise: very efficient transport process is required

◆□▶ ◆□▶ ◆言▶ ◆言▶ 言 ∽9.00

• for small coherence length of the field the limit on the IGMF strength improves as $B_{\min} \propto L_{\rm coh}^{-1/2}$ (Neronov & Semikoz 2009)

Backup: coherence length dependence

• for small coherence length of the field the limit on the IGMF strength improves as $B_{\min} \propto L_{\rm coh}^{-1/2}$ (Neronov & Semikoz 2009)

Backup: coherence length dependence

• for small coherence length of the field the limit on the IGMF strength improves as $B_{\min} \propto L_{\rm coh}^{-1/2}$ (Neronov & Semikoz 2009)

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 - のへぐ

• mean travel distance $\langle \Delta x_e \rangle$ of a parent e^{\pm} is defined by the cooling length

▲ロ▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ ■ - のQの

• however, the distribution of Δx_e has pronounced tails towards $\Delta x_e \sim 1 \text{ kpc}$

dN/d∆x_e (arbitrary normalization)