

Gamma-ray Space Telescope

Constraints on dark matter annihilation and decay in the Milky Way halo

Gabrijela Zaharijas (ICTP & INFN Trieste)

A. Cuoco, J. Conrad, Z. Yang

On behalf of the Fermi LAT Collaboration

[Ackermann et al., Apj, 2012; 1205.6474]

WIMP annihilations

- Self annihilations of Weakly Interacting Massive Particles (WIMPs) expected to produce γ rays detectable by the Fermi LAT.
 - → reviewed by L. Bergstrom and S. Profumo
- Focus on continuum emission from WIMP annihilations.
- Explore representative channels to follow phenomenological approach, independent of any specific Beyond the Standard Model physics

Predicted DM signal

MW halo as a DM target

- DM annihilation signal is expected to be high in the inner regions of our halo
 - Sun is 'only' ~8 kpc away from the GC
 - DM content of the Milky Way is high
- However, diffuse gamma-ray emission presents strong background
 + there are no spectral or morphological smoking guns in this analysis!

Fermi sky map - three year data.

Diemand et. al, APJ, 2006.

- Astrophysical emission strong along the plane + Fermi LAT data revealed large scale structures at high latitudes (Fermi bubbles and Loop I)
- ROI: 5° <|b|<15° and |l|<80°:
 - 1. limit astrophysical uncertainty by masking out the Galactic plane and by cutting-out high latitude emission from Fermi lobes/Loop I
 - **2.** minimize DM profile uncertainty (the highest at the Galactic Center region)
- 24 months data, p7CLEAN_v6 event selection in the 1-100 (400) GeV energy range.

Su et al, 2010. Talk by D. Finkbeiner & posters by A. Franckowiak, D. Malishev, M. Su.

- Signal and background modeling is based on a series of physically-motivated parametrized template maps of the diffuse emission derived with the GALPROP code.
- We sample a grid of nonlinear astrophysical parameters while fitting a set of linear parameters of the diffuse emission.
 - Non-linear (grid) parameters: chosen among the ones expected to be the most degenerate with DM component.

Non linear Parameters	Symbol	
index of the injection CRE spectrum	$\gamma_{e,2}$	1.925 - 2.8
half height of the diffusive halo	z_h	2 - 15 kpc
dust to HI ratio	d2HI	12-17 ×10 ¹⁷ mag cm ²

- For each grid model we produce template maps which are then rescaled by linear parameters in the fit. Template maps:
 - Galactic emission template maps (bremss, π^0 , IC) produced assuming CR sources to be distributed as a step function in Galacto-centric rings
 - CR source distribution: poorly constrained in the inner Galaxy → CRe and CRp source distributions are free linear parameter in each ring
 - DM template maps
 - Isotropic (extra Galactic emission

Linear Parameters	Symbol	_
eCRSD and pCRSD coefficients	c^e_i, c^p_i	7X2
local H_2 to CO factor	X_{CO}^{loc}	1
IGB normalization in various energy bins	$\alpha_{IGB,m}$	5
DM normalization	$lpha_\chi$	1

- for each grid point (different parabolas) we find a likelihood function L_k; maximized over all linear parameters α, for every value of the DM norm, θ_{DM}.
- we construct test statistics (TS) wrt to the best overall likelihood
- The profile likelihood is the curve that follows the minima of all grid/GALPROP models.
- assuming it behaves as a χ^2 with one degree of freedom, we set the limits using the value of a DM normalization for which its value raises by 9/25 from the minimum.
 - Minima of LogL functions is well populated, making it possible to set $3(5)\sigma$ DM limits marginalizing over many astrophysical models.

LogLikelihood vs DM normalization for a fixed DM model and mass.

$$L_k(\theta_{DM}, \hat{\vec{\alpha}}) = max_{\vec{\alpha}} \prod_i P_{ik}(n_i; \vec{\alpha}, \theta_{DM})$$
$$TS = 2\Delta \ln(\mathcal{L}/\mathcal{L}_0)$$

- DM signal in our Galaxy high, but searches challenging due to bright diffuse emission signal degenerate with that of a DM.
- Several conservative choices in the analysis:
 - consider intermediate latitudes where uncertainty due to the profile is smaller.
 - model and subtract astrophysical signal only at >3 kpc from the GC, which is relatively well modeled (compared to inner Galaxy).
- Derived competitive DM limits (comparable to those of dwarf Galaxies & with different type of uncertainties) and demonstrated a method which could be used to study presence of additional components in the diffuse emission.
- To come: improved modeling of astrophysical mission (finer grid, more propagation models, Fermi bubbles) & inclusion of uncertainty in the DM density profile.

Full parameter tables

Non linear Parameters	Symbol	Grid values
index of the injection CRE spectrum	$\gamma_{e,2}$	1.925, 2.050, 2.175, 2.300, 2.425, 2.550, 2.675, 2.800
half height of the diffusive halo ^{a}	z_h	$2, 4, 6, 8, 10, 15 \; \mathrm{kpc}$
dust to HI ratio	d2HI	$(0.0120, 0.0130, 0.0140, 0.0150, 0.0160, 0.0170) \times 10^{-20} \text{ mag cm}^2$

eCRSD and pCRSD coefficients	c^e_i, c^p_i	$0,+\infty$
local H_2 to CO factor	X_{CO}^{loc}	$0-50 \times 10^{20} \text{ cm}^{-2} \text{ (K km s}^{-1})^{-1}$
IGB normalization in various energy bins	$\alpha_{IGB,m}$	free
DM normalization	$lpha_{\chi}$	free

Parameter	$ \delta\sigma/\sigma $ [%], $b\bar{b}$	$ \delta\sigma/\sigma $ [%], $\mu^+\mu^-$
$v_A \ [\ 30; \ 36; \ 45] \ \mathrm{km \ s^{-1}}$	[6; 0 ; 11]	[4.; 0 ; 9]
$\gamma_{p,1}$ [1.8; 1.9 ; 2;]	[1.0; 0 ; 2.5]	[1.5; 0 ; 2.0]
$\gamma_{p,2} \ [\ 2.35; \ 2.39; \ 2.45]$	[2.5; 0 ; 1.5]	[2.5; 0; 1.5]
$ \rho_{br,p} $ [10; 11.5 ; 12.5] GV	[0.5; 0; 1.0]	[0.9; 0 ; 1.5]
d2HI [0.0110, 0.0140 ; 0.0170] 10^{-20} mag cm ²	[3; 0 ; 12]	[3; 0 ; 9]
$\gamma_{e,2} \ [\ 2.0; \ 2.45; \ 2.6]$	[17; 0; 7]	[18; 0 ; 5]
(D_0, z_h) [(5.0e28, 4) ; (7.1e28, 10)] cm ² s ⁻¹	[0 ; 10]	[0 ; 7]
CRSD [SNR ; Pulsar]	[0 ; 61]	[0 ; 59]
KRA($\delta = 0.5$); KOL($\delta = 0.3$); PD($\delta = 0.6$)	[4.0; 0 ; 3.0]	[1.0; 0 ; 5]
$V_c \ [0; 20] \ { m km \ s^{-1}}$	[0 ; 6]	[0 ; 4]
GMF [Conf 1 , Conf 2]	[0; 3]	[0 ; 8]

17

$$\begin{aligned}
For the form \\
F$$