Models of hydrostatic atmospheres of magnetars at high luminosities

Thijs van Putten¹

Anna Watts¹, Caroline D'Angelo¹, Matthew Baring², Chryssa Kouveliotou³ ¹University of Amsterdam, ²Rice University, ³NASA/Marshall Space Flight Center

arXiv:1208.4212

October 30 2012, Fermi Symposium, Monterey

Magnetars

- * Neutron stars with inferred dipole magnetic field $B \sim 10^{13}$ - 10^{16} G.
- Exhibit pulses (X-ray & radio), soft gamma ray bursts (~10⁴⁰ erg s⁻¹) and giant flares (~10⁴⁴ erg s⁻¹).

Magnetar model

- * What is the equation of state?
- * How and where is the emission created?
- What is the magnetic field configuration?

Thompson & Duncan (1995)

A peculiar magnetar burst

Fermi GBM light curve of August 2008 burst from SGR 0501+4516.

Light curve and black body fits of X2127 (Smale 2001)

Magnetar atmosphere models

Thijs van Putten

October 30 2012

Photospheric Radius Expansion in magnetars?

Fermi GBM light curve of August 2008 burst from SGR 0501+4516.

- PRE in magnetars seems qualitatively possible (Watts et al. 2010) if magnetars have:
 - Emission from optically thick region
 - A critical luminosity
 - Photosphere cooling with expansion
 - Opacity increasing with radius
- * Observing it would constrain EoS, *B* and the emission location.

Nonmagnetic models

- PRE requires sequence of extended stable atmospheres.
- Nonmagnetic models made by Paczynski & Anderson (1986).
- Stable nonmagnetic atmospheres exist up to r = 200 km.

$$\frac{\mathrm{d}P_{\mathrm{r}}}{\mathrm{d}r} \simeq -\rho \frac{GM}{r^2} \to \frac{L}{L_{\mathrm{cr}}} \simeq 1$$

We find:

No hydrostatic magnetar atmospheres with photospheric height > 10 m.

Nonmagnetic case

Our result

Magnetar atmosphere models

Thijs van Putten

October 30 2012

Opacity in a super strong magnetic field

* Two photon polarizations: O-mode
(E**IB**) and E-mode (E⊥B)

$$\sigma_{\rm O} \simeq \sigma_{\rm Th}$$

 $\sigma_{\rm E} \simeq \sigma_{\rm Th} \frac{\omega^2}{\omega_{\rm C}^2} \propto \frac{T^2}{B^2}$

E-mode Rosseland mean electron scattering opacity

Atmosphere models

Magnetar atmosphere models

Thijs van Putten

October 30 2012

Conclusions

- Hydrostatic extended magnetar atmospheres do not exist in open field line regions.
- * Photospheric Radius Expansion cannot occur in magnetars.
- Spectral models of magnetar bursts considering two distinct components attributed to the E- and O-mode photospheres may have to be reconsidered.
- * Future work: what *does* happen when *L* reaches *L*_{cr} in a magnetar atmosphere?