
Automated Processing of Fermi/GBM GRB

Triggers

Stephen Holland, Jerry Bonnell, and Davide Donato

September 25, 2012

1 Introduction

The purpose of this document is to describe the do gbm.py script. This script
is intended to do a preliminary automated analysis of Fermi/GBM gamma-ray
burst trigger data. It operates on one GRB trigger at a time. The script is run
in the directory that contains the input data, for example

~/gbm/triggers/year/bnYYMMDDNNN/current

However, it is strongly recommended that the data in this directory be copied
to a working directory (e.g., ~/gbm/triggers/year/bnYYMMDDNNN/work) before
running the script in order to avoid any accidental loss of the input data. The
script implements the GBM Gamma-Ray Burst Analysis Thread at

http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/gbm grb a-

nalysis.html

as it was in August 2011. Some changes have been made to enable automa-
tion and to try and improve the results.

Do gbm.py is written in Python 2.6, but every effort has been made to
make it consistent with Python 3. The script requires that the following third
party Python libraries.

numpy - This is needed to fit the background, and is required by some of the
other third party libraries.

pyfits - This is the STScI Python library for operating of FITS files.

xspec - This is the Python XSpec module distributed by HEASARC.

2 Processing Steps

The basic structure of the automated processing script is given below.

1. Read the command line arguments

1

2. Identify the detector files.

3. For each detector file do the following.

(a) Create a light curve.

(b) Determine Bayesian blocks for the light curve.

(c) Fit and subtract the background.

(d) Determine new Bayesian blocks to identify the source.

(e) Compute the signal-to-noise ratio (S/N) per bin for the source.

4. Take the detector with the highest S/N per bin to be the best detector.

5. Extract a background-subtracted light curve from the best detector.

6. Compute T90 for the best light curve.

7. Create a PHA2 file for each detector.

8. Identify the detectors with a good source detection.

9. Find the response matrix files.

10. Use pyxspec to perform a joint spectral fit to all of the good data.

11. Write a summary of the results.

2.1 Read the Command Line Arguments

At present this is done by brute force in the main Python script. This should be
changed to take advantage of Python’s argparse module. The command line
arguments currently allow the user to specify the trigger name, the background
and source time intervals to use, the detectors to use, and to specify TRIGTIME.
See § 3 for details on how to call the script.

Background and source intervals can be optionally specified. If NONE is en-
tered then the code will automatically determine the time intervals for each
detector. If the time intervals are specified by the user they are given in
the form bkg1 start-bkg1 stop:src start-src stop:bkg2 start-bkg2 stop

where bkg1 indicates the background interval before the burst starts, src indi-
cates the interval when the source is active, and bkg2 indicates the background
interval after the source. All three must be specified.

TRIGTIME can either be specified by the user (in MET), or read from the
detector files by entering TRIGTIME.

2

2.2 Identify the Detector Files

There are three ways that the user can specify which detector files to use.
The detectors command line argument can be set to ALL, TRIGGER, or a
string of 0s and 1s that specify specify which detectors to use in the format
nnnnnnnnnnnn.

If detectors = ALL then the working directory is scanned for any files of
the form glg * * v*.fit. These files are assumed to be GBM detector files.

If detectors = TRIGGER then the DET MASK keyword is read from
the glg tcat all <trigger id> vNN.fit file and only the detectors that were
triggered by this burst are used.

If detectors = nnnnnnnnnnnn then only the detectors that are indicated
by a “1” are used. The format of this string is exactly the same as the format
of the DET MASK keyword. For example, the string ’010010001000’ indicates
that detectors n1, n4, and n8 are to be used.

2.3 Process the Individual Detector Files

Once the detector files that we are interested in have been identified we work
with each one one at a time.

2.3.1 Create a Light Curve

Run the gtbin program to extract the light curve. Use the default light curve
time bins from Valerie Connaughton’s presentation at the Goddard Data Anal-
ysis Workshop in Dec 2010. These are 0.128 s for TTE data, 1.024 s for CSPEC
data, and 0.064 s for CTIME data. If the data type is not one of these then the
bin width is set so that there are 1024 bins in the light curve.

2.3.2 Determine Bayesian Blocks

If the user specifies the background and source time intervals then use those
and skip to § 2.3.5.

If the program is to determine the background and source intervals auto-
matically then run gtburstfit to compute Bayesian blocks for the light curve.
These will be used to estimate the start and end of the burst. This is a prelim-
inary estimate because the background has not been subtracted yet. The pre-
burst background interval is assumed to be the duration of the first Bayesian
block. The source interval is assumed to be the interval from the end of the first
Bayesian block to the start of the last Bayesian block. These criteria are the
same as those used by the Swift/BAT tool battblocks. If the last Bayesian
block is shorter than one second then the source stop time is taken to be the
start of the second-to-last Bayesian block. This was done so that there will be
at least one second of data at the end of the light curve to fit the background.

There is an error in the fhelp documentation for gtburstfit. The docu-
mentation says that gtburstfit fits the following model, C(t), to a light curve
consisting of N pulses.

3

C(t) = B +
N

∑

i=1

Ai exp (τ1,i/(t − t0,i) + (t − t0,i)/τ2,i) (1)

The background counts is B, Ai is the amplitude of pulse i, t0,i is the start time
of pulse i, and τ1,i, τ2,i are the rise and decay constants respectively of pulse i.
However, the equation that is actually used in gtburstfit is

C(t) = B +
N

∑

i=1

Aie
2µi exp (−τ1,i/(t − t0,i) − (t − t0,i)/τ2,i) (2)

where µi =
√

τ1,i/τ2,i. Do gbm.py does not make direct use of this equation,
but this discrepancy will be important if we ever want to add the option to plot
the fitted model against the GBM light curve.

2.3.3 Fit and Subtract the Background

This step is only done if the source and background intervals are being deter-
mined automatically.

Fit and subtract the background from the light curve. Add back the mean
background so that Poisson statistics will still give reasonable results. The
background is fit with a 2nd order polynomial. The background regions before
and after the source are used for the fit. The last bin of the light curve may be
incomplete because the duration of the data may not be an even multiple of the
bin width. To avoid having this bias the results we set the counts and error for
the last bin equal to the values for the second-to-last bin.

2.3.4 Determine Better Bayesian Blocks

This step is only done if the source and background intervals are being deter-
mined automatically.

Now that we have a background-subtracted light curve recompute the Bayesian
blocks to try and get a better estimate of the burst duration.

2.3.5 Compute S/N Per Bin

Compute the mean S/N per bin of the source. This is intended to be an estimate
of the quality of the signal in this detector. The background is fit and subtracted
so that all of the counts are either from the source or noise. The S/N is computed
for each bin in the light curve. The source is assumed to start at the source
start time (third entry) in the input intervals list. The source is assumed to
stop when three consecutive bins have negative S/N. If this does not happen
then the source is assumed to stop at the source stop time (fourth entry) in the
input intervals list.

4

2.4 Find Detector with Best Source Signal

The best detector is defined to be the detector that gives the highest S/N per bin.
If none of the detections have a S/N per bin value above some threshold then
we assume that there was no detection for this GRB and stop. The threshold
is currently S/N per bin = 1.5.

2.5 Extract the Background-Subtracted Light Curve for
the Best Detector

We want to compute T90 in a specified energy range using the data from the
best detector. The energy range is currently 50–300 keV. These numbers are
set at the start of the main() section of the code. Run fselect to select events
in this energy range,

We follow the steps in § 2.3 to produce this light curve, but we omit step 2.3.5.

2.6 Compute T90

Compute T90 for the energy-selected, background-subtracted light curve from
the best detector. Use the algorithm described in the battblocks documen-
tation. See that help file for details. We use the TOTVAR method to compute
the error in T90.

2.7 Create the Spectra (PHA2) Files

Use gtbin to create PHA2 spectra for each detector.

2.8 Identify Good Spectra

Good spectra are defined as those where the source S/N per bin in the light
curve is above some threshold. This is currently the same threshold as in § 2.4.
Only detectors that satisfy this criterion are used in the spectral fitting.

2.9 Find the Response Matrices

Find the response matrix that corresponds to each PHA2 file. The response
matrix is assumed to in a file with a name like gle cspec SSS.rsp where SSS

is a string that exactly matches that of the PHA2 file.

2.10 Perform a Joint Spectral Fit

This section is still somewhat rough. We use pyxspec to do joint fits to all of
the good spectral data. We fit a Band function and a cutoff power law, then take
the one with the best fit as the best-fit model. The energy range for computing
the fluence is currently 10 – 1000 keV and is specified at the start of the main()
section of the code.

5

The script creates an XSpec command file called <trigger id> xspec save-

.xcm that contains the XSpec commands needed to read in the data and fit the
models. This file is intended to allow a user to restart and refine the spectral
analysis for a trigger.

In addition to the XSpec save file the code creates a postscript plot showing
the fits to the Band model and the cutoff power law model. These files are called
grbm <trigger id> xspec.ps and cutoffpl <trigger id> xspec.ps respec-
tively. Pyxspec creates a log file called <trigger id> xspec.log that contains
the standard Xspec logging output.

Here are some notes on how the spectral fitting is done.
Each PHA2 file contains two spectra. The background spectrum is stored

first, because it extracts the spectrum before the burst went off. The source
plus background spectrum is stored second. Hence, the XSpec data command
reads the {2} part of the file and the background command reads the {1} part
or the spectrum.

The good channels are set based on the rules given in Valerie Connaughton’s
presentation at the Goddard Data Analysis Workshop in Dec 2010. These rules
are to ignore energies below 8 keV and above 900 keV for the NAI detector and
to ignore energies below 200 keV and above 40 MeV for the BGO detectors.

The fit to each model is done as follows. The default model parameter initial
values are used. The pgstat statistic is used rather than the Cash statistic
specified by Valerie. The now recommended pgstat statistic assumes Gaussian

error for the background. The flux is computed using the convolution model
cflux in XSpec and is then multiplied by the duration of the spectrum to get
the fluence. The model that gives the smalled value of the pgstat statistic
divided by the number of degrees of freedom is taken to be the best-fit model.

2.11 Write a Summary

Write a neat table of results for this trigger.

3 Running the Script

The script was written in Python 2.6. The following non-system packages are
required: numpy, pyfits, and xspec. The script operates on the data for an
individual GBM trigger. To run the script first cd to the directory containing
the trigger data.

> cd ~/gbm/triggers/2008/bn080825593/current

Next, run the script do gbm.py in this directory. We recommend making
a back-up of the current directory so that you can reprocess the original data
if you are not happy with the automated processing. The do gbm.py script
currently takes four command line argument, which is the GBM trigger id.

> do_gbm.py trigger_id time_string detectors timezero

6

trigger id - This is the GBM trigger ID of this trigger. For example, bn080825593.

time strong - This is one of the following values:

• NONE—Let the script compute the source and background time inter-
vals.

• b1-b2:s1-s2:b3-b4—These are the start and stop times of the first
background interval, the source interval, and the second background
intervals respectively. All six times are in MET.

detectors - This is one of the following values:

• ALL—Use all of the detector files in the working directory.

• TRIGGER—Use only the detectors that triggered for this burst.

• nnnnnnnnnnnn—Use the detectors specified in the nnnnnnnnnnn string.

timezero - This is one of the following values:

• TRIGTIME—Use TRIGTIME values in the detector files.

• <user time>—Set TRIGTIME to the specified time, in MET.

The script currently prints several status messages, most of which are in-
tended for debugging. The last thing the script does is print out a summary of
processing that looks something like this.

Summary Information for bn080825593

Source: GRB080825593

Trigger Time: 241366429.105 (MET)

Best Data File: glg_tte_n9_bn080825593_v01.fit

Signal-to-Noise Per Bin: 6.07

T_90: 20.027 +/- 0.011 s (50-300 keV)

Spectrum: Band Function

alpha: -0.71 +/- -1.00

beta: -2.99 +/- -1.00

E_peak: 203.2 +/- 157.2 keV

fluence (10-1000 keV): -4.27e-02 +/- 0.00e+00 erg/cm^-2

Source - This is the value of the OBJECT keyword from the detector file with
the best source detection.

Trigger Time - This is the value of the TRIGTIME keyword from the detector
file with the best source detection.

Best Data File - This is the data file with the best detection.

Signal-to-Noise Per Bin This is the mean S/N per bin for the source light
curve.

7

T 90 - This is the T90 value and 1-σ error in the given energy band. This is
computed from the best detector.

Spectrum - This is the spectral model that gives the best fit.

alpha - This is the α value for Band model. For a cutoff power law alpha is
the power-law index. Note that the sign convention may depend on the
model.

beta - This is the β value for the Band model. For a cutoff power law beta is
not defined.

E peak - This is the Epeak value for the best-fitting model. The error is cur-
rently meaningless.

fluence - This is the fluence in the given energy range. This value is currently
meaningless.

Plots showing the spectral fits for each spectral model are also produced.
They are called cutoffpl bn080825593 xspec.ps for the cutoff power law model
and grbm bn080825593 xspec.ps for the Band model. Two log files are also
produced: TT gtburstfit.LOG contains output from the gtburstfit command
while bn080825593 xspec.LOG is the XSpec log file.

3.1 Output Files

For each detector the following files are created. If no source is found then some
of these files will not be created.

glg tte XX trigger vNN.lc - This is the preliminary lightcurve file for de-
tector XX.

glg tte XX trigger vNN flatbkg.lc - This is the lightcurve file for detector
XX with the background curvature subtracted.

glg tte XX trigger vNN.pha - This is the PHA2 spectrum file for detector
XX.

For the detector with the “best” source detection the following files will be
created.

glg tte XX trigger vNN emin emax.fit - This is the screened event file for
detector XX. It contains events in the energy range [emin,emax].

glg tte XX trigger vNN emin emax.lc - This is the preliminary lightcurve
file for detector XX in the [emin,emax] energy range.

glg tte XX trigger vNN emin emax flatbkg.lc - This is the lightcurve file
for detector XX in the [emin,emax] energy range with the background cur-
vature subtracted.

8

glg tte XX trigger vNN emin emax tbins.fits - This file contains the time
intervals for the background and source spectra.

The following files are also created.

cutoffpl trigger xspec.ps - A postscript plot of the cutoff power law model
fit to the spectral data.

grbm trigger xspec.ps - A postscript plot of the Band model fit to the spec-
tral data.

trigger xspec.log - The XSpec log file.

trigger xspec save.xcm - The XSpec save file. This can be used to rerun
XSpec using the command xspec - trigger xspec save.xcm.

TT gtburstfit.LOG - This is an intermediate file that can be discarded.

3.2 Magic Numbers

There are a few “magic numbers” embedded in the code. These are described
here.

If the user specifies to only use the triggered detectors then the DET MASK
keyword is read from the file glg tcat all TRIGGER vNN.fit where TRIGGER
is the trigger id and NN is the version number. This is in get detectors.

The script assumes that the detector file filenames have the form glg STRING-

DETECTOR TRIGGER vNN.fit where STRING is the data type (TTE, CSPEC,
&c.), DETECTOR is the detector id (n0,. . . ,nb,b0,b1), TRIGGER is the trigger
id, and NN is the version number. This is in get list of detector files.

The background is fit with a 2nd order polynomial. This can be changed by
changing the value of polynomial order in fit background.

The second background interval must have a minumum length of one second.
This is set with min block duration in get time intervals.

The maximum number of source bins with a negative S/N before the source is
assumed to have ended is currently set to three. This is set with max consecutive-

negative sn in compute signal to noise.

The response matrix files are assumed to have the form glg cspec DETECTOR-

TRIGGER vNN.rsp where DETECTOR is the detector id, TRIGGER is the trig-
ger id, and NN is the version number. This is in find response file.

XSpec is set to ignore energies <8 keV and >900 kev for the NAI de-
tectors and <200 keV and >40 MeV for the BGO dectors. These are set in
fit spectra.

9

The energy range for the T90 calculation is [50, 300] keV. The energy range
for the fluence calculation is [10, 1000] keV. These are set at the start of main

with e t90 min, e t90 max, e flu min, and e flu max.

The minimum S/N per bin required for a source signal to be accepted as
real is currently 1.5. This is set with threshold sn in main.

4 Comparison with the Fermi GBM Burst Cat-
alog

The script has been run for all the 489 GRBs contained in the Fermi GBM Burst
Catalog (http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html).
A comparison of some of the temporal and spectral quantities (namely, the T 90,
the spectral slopes α and β, the integrated flux and fluence) is presented in an ac-
companying document that can be found in the User Contributed section of the
Fermi Science Support Center website (http://fermi.gsfc.nasa.gov/ssc-
/data/analysis/user/). The comparison shows that there are systematic dif-
ferences for some quantities (in particular the T 90) when estimated using the
script do gbm.py or the method adopted to generate the Fermi GBM Burst
Catalog. This implies that the user should run different types of analysis and
carefully select the results that best model the data.

5 Functions

5.1 main

"""Run basic GRB processing on Fermi/GBM data.

This script takes a Fermi/GBM burst trigger directory as input.

It constructs light curves, identifies the burst, computes burst

durations, and fits a spectrum to the burst. The analysis is

fully automated and is intended to provide a quick look analysis

of a Fermi/GBM trigger.

Usage:

do_gbm.py trigger_id timestring detectors timezero

trigger_id -- The Fermi/GBM trigger id of this burst.

timestring -- NONE tells the script to identify the source

and background intervals automatically.

b1-b2:s1-s2:b3-b4 where b1, b2, s1, s2, b3, b4

are the start and stop times of the first

background interval (b1,b2), the source interval

(s1,s2), and the second background interval

10

(b3,b4) respectively, in MET seconds.

detectors -- ALL tells the script to use all the detectors,

TRIGGER tells the script to use only the

detectors that were triggered by the burst,

nnnnnnnnnnnn is a string of 0s and 1s where

1 indicates that this detector is to be used.

The string starts with the n0 detector and ends

with the nb detector.

timezero -- TRIGTIME tells the script to set the trigger time

to the value of the TRIGTIME keyword in the input

detector file.

x.y tells the script to use the time x.y (MET

seconds) as the trigger time.

"""

5.2 get times

"""Split a string of times into background and source intervals.

Usage: times = get_times(time_string)

Input:

time_string -- (string) b1-b2:s1-s2:b3-b4 where b1,b2 are

the stop and start times of the first

background interval; s1,s2 are the start and

stop times of the source interval; and b3,b4

are the start and stop times of the second

background interval.

Output:

times -- (list) A list containing the six times that define

the three intervals. Returns None if time_string

cannot be parsed into six floats.

"""

5.3 is number

"""Check if a string is a number."""

5.4 get detectors

"""Parse the detectors string.

Usage: detector_files = get_detectors(detector_string, trigger_name)

11

Input:

detector_string -- (string) ALL - Use all the detectors that

had a detection.

TRIGGER - Use the detectors that

triggered.

nnnnnnnnnnnn - Use detectors specified by

the user.

trigger_name -- (string) Fermi/GBM trigger id

Output:

files -- (list) List of detector files, or None if none were

found

If detector_string = TRIGGER this function reads the DET_MASK

keyword from the glg_tcat_all file to identify the triggered

detectors.

"""

5.5 get specified detectors

"""Create a list of detector files to use.

Usage: files = get_specified_detectors(trigger_name, detector_files,

detmask)

Input:

trigger_name -- (string) Fermi/GBM trigger id

detector_files -- (list) List of detector files to check

detmask -- (string) Which detectors to use

Output:

files -- (list) List of detector files to use

"""

5.6 get list of detector files

"""Return Fermi/GBM detector files in the current directory.

Usage: files = get_list_of_detector_files(trigger_name)

Input:

trigger_name -- (string) Fermi/GBM trigger id

12

Output:

files -- (list) List of detector files

"""

5.7 run gtbin lightcurve

"""Call gtbin to generate a Fermi/GBM light curve.

Usage: run_gtbin_lightcurve(detector_file, lightcurve_file,

tstart, tstop, dtime)

Input:

detector_file -- (string) Fermi/GBM detector file name

lightcurve_file -- (string) Output lightcurve file name

tstart -- (float) Start time for lightcurve in seconds (MET)

tstop -- (float) Stop time for lightcurve in seconds (MET)

dtime -- (float) Bin width for lightcurve in seconds

Output:

Returns None if gtbin ran without generating an error.

Returns an error string if there was a problem.

"""

5.8 time intervals

"""Determine background and source intervals.

Usage: intervals = time_intervals(lightcurve_file, trigtime)

Input:

lightcurve_file -- (string) lightcurve file name

trigtime -- (float) trigger time of the burst

Output:

intervals -- (list) The start and stop times, in MET, of the

three intervals (first background, source,

second background). Returns None if no

intervals were found.

This function finds preliminary intervals using the input light

curve then uses the two background intervals to fit and

subtract the background. It then finds refined intervals using

the background-subtracted light curve.

13

"""

5.9 fit background

"""Fit the background for a light curve.

Usage: background = fit_background(time, counts, trigtime, intervals)

Input:

time -- (list) time in MET seconds

counts -- (list) counts corresponding to time

trigtime -- (float) trigger time of burst

intervals -- (list) the background and source time intervals

Output:

background -- (list) the fitted background corresponding to

time

This function fits a polynomial to the two background

intervals. The source interval is not used in the fit.

"""

5.10 subtract background curvature

"""Fit and subtract curvature from a Fermi/GBM lightcurve.

Usage: new_lightcurve =

subtract_background_curvature(lightcurve, trigtime,

intervals)

Input:

lightcurve -- (string) lightcurve filename

trigtime -- (float) burst trigger time

intervals -- (list) source and background intervals

Output

new_lightcurve -- (string) background-subtracted lightcurve

file name

Read the light curve, then fit and subtract the background.

The mean background is added back to the light curve to

preserve Poisson statistics. The final light curve is written

to a new light curve file.

14

"""

5.11 get time intervals

"""Return background and source start and stop times intervals.

Usage: (bkg1_start,bkg2_stop,src_start,src_stop

bkg2_start,bkg2_stop) =

get_time_intervals(event_file)

Input:

event_file -- (string) Fermi/GBM detector event file name

Output:

bkg1_start -- (float) background interval 1 start time (MET)

bkg1_stop -- (float) background interval 1 stop time (MET)

src_start -- (float) source interval start time (MET)

src_stop -- (float) source interval stop time (MET)

bkg2_start -- (float) background interval 2 start time (MET)

bkg2_stop -- (float) background interval 2 stop time (MET)

Call gtburstfit to determine Bayesian blocks for the lightcurve.

The first background interval is the first Bayesian block. The

last time interval is the last Bayesian block unless it is

shorter than min_block_duration, then it is the last two

Bayesian blocks. The source interval is the interval between

the two background intervals.

"""

5.12 compute signal to noise

"""Compute the signal-to-noise ratio of a lightcurve.

Usage: sn = compute_signal_to_noise(lightcurve_file, intervals

user_times, trigtime)

Input:

lightcurve_file -- (string) name of the lightcurve file

intervals -- (list) start and stop times of the source

and background intervals

user_times -- (boolean) True if the intervals were

set by the user and False if the

intervals were determined by the script

trigtime -- (float) trigger time (MET s)

15

Output:

mean_sn -- (float) the mean signal-to-noise ratio per

bin in the source interval

intervals -- (list) improved source and background

intervals

This function reads the lightcurve file then fits and subtracts

the background. The signal-to-noise ratio is computed in each

bin in the source interval then a mean signal-to-noise ratio is

computed. If user_times is False (the user did not specify the

intervals) then the source interval is refined so that it ends

when max_consecutive_negative_sn bins with negative signal-to-

noise ratios are encountered. The second backgroud region is

also adjusted.

"""

5.13 compute duration

"""Compute the T_fraction duration of the source.

Usage: [t_fractiont_fraction, t_fraction_err,

t_fraction_start, t_fraction_stop] =

compute_duration(lightcurve_file, src_start, src_stop,

bkg_start, bkg_stop, fraction)

Input:

lightcurve_file -- (string) Name of lightcurve file

src_start -- (float) Start time of source (MET)

src_stop -- (float) Stop time of source (MET)

bkg_start -- (float) Start time of background (MET)

bkg_stop -- (float) Stop time of background (MET)

fraction -- (float) T_fraction value (0-100)

Output:

t_fraction -- (float) T_fraction duration (s)

t_fraction_err -- (float) T_fraction 1-sigma error (s)

t_fraction_start -- (float) Start time of T_fraction

interval (MET s)

t_fraction_stop -- (float) Stop time of T_fraction

interval (MET s)

Computes the T_fraction (e.g. T_90, T_50) duration of a source

as well as its 1-sigma error and the start and stop times of

the T_fraction duration. This function uses the method

described in the battblocks documentation and the TOTVAR method

16

to compute the error.

"""

5.14 select on energy

"""Extract a light curve in a user-specified energy band.

Usage: select_on_energy(infile, emin, emax, outfile)

Input:

infile -- (string) name of input events file

emin -- (float) minimum energy (keV)

emax -- (float) maximum energy (keV)

outfile -- (string) name of output events file

Call fselect to select events with energies in the

range [emin,emax].

"""

5.15 create time bins file

"""Create a time bin file for gtbin.

Usage: create_time_bin_file(background_start_time,

background_stop_time,

source_start_time,

source_stop_time,

output_file_name)

Input:

background_start_time -- (float) in MET s

background_stop_time -- (float) in MET s

source_start_time -- (float) in MET s

source_stop_time -- (float) in MET s

fits_file -- (string) name of output time bins

file

Call gtbindef to create a FITS file with the background and

source intervals that will be used to extract spectra from

the Fermi/GBM detector files.

"""

17

5.16 find response file

"""Find a .rsp file corresponding a .pha file.

Usage: rsp_file = find_response_file(pha_file)

Input:

pha_file -- (string) Name of .pha file

Output:

rsp_file -- (string) Name of corresponding .rsp file

This function finds all of the .rsp files in the current

directory. Then it looks for a .rsp file with exactly the

same name as the .pha except that tte is replaced with cspec.

Example: glg_tte_n6_bn121205000_v01.rsp and

glg_cspec_n6_bn121205000_v01.pha

"""

5.17 fit model spectrum

"""Fit an XSpec model to spectral data.

Usage: fit_model_spectrum(statmethod, xspec_save_file)

Input:

statmethod -- (string) XSpec statmethod (e.g., chi,

cstat, pgstat)

xspec_save_file -- (string) File listing the XSpec commands

This function uses pyxspec to fit an XSpec model. It assumes

that the data and the model have already been set up. This

functions just does the actual fitting.

"""

5.18 fit spectra

"""Do an XSpec spectral fit to Fermi/GBM burst data.

Usage: [model_data, [goodness_of_fit, dof],

[fluence, fluence_err]] = fit_spectra(trigger_name,

spectrum_list, response_list, fit_statistic

e_flu_min, e_flu_max, duration, plot_file)

18

Input:

trigger_name -- (string) Fermi/GBM trigger id

spectrum_list -- (list) list of .pha files to use

response_list -- (list) of .rsp files to use

fit_statistic -- (string) XSpec fit statistic to use

e_flu_min -- (float) minimum energy for fluence

calculation (keV)

e_flu_max -- (float) maximum energy for fluence

calculation (keV)

duration -- (float) duration of the spectrum (s)

plot_file -- (string) name of output plot file

Output:

model_data -- (list) XSpec model information

[name, par1, par1_err, par2, par2_err, ...]

goodnes_of_fit -- (float) goodness of fit value

dof -- (float) degrees of freedom in fit

fluence -- (float) fluence (erg cm^-2)

fluence_err -- (float) error in fluence (erg cm^-2)

This function does the spectral fitting using pyxspec. It

currently tries to fit a Band model and a cutoff power law

model and chooses the one with the best fit.

"""

19

