GSSC-0009

[image: image24..pict][image: image25.png][image: image26.png]

FERMI GAMMA-RAY SPACE TELESCOPE

FERMI SCIENCE SUPPORT CENTER

INGEST SYSTEM DETAILED DESIGN

August 21, 2009
NASA Goddard Space Flight Center
Greenbelt, Maryland

FERMI SCIENCE SUPPORT CENTER

INGEST SYSTEM DETAILED DESIGN

Prepared By:

Don Horner Date

FSSC Programmer
Approved By:

David Davis

Date

FSSC Data Archive and Support Software Lead

CHANGE RECORD PAGE

	DOCUMENT TITLE: Fermi Science Support Center Ingest System Detailed Design

DOCUMENT DATE:

	ISSUE
	DATE
	PAGES AFFECTED
	DESCRIPTION

	
	
	All
	Draft v03

	Added subsections to section 4 describing the various branches of the ingest system needed for GRT 1 & 2. Updated the script and database table descriptions for the data products handled in GRT 2. Added descriptions of the priority.pl script and the ProjectDatabase and CommandTracker database tables.
	Dec 27, 2004
	p. 14 to end of document
	Draft v0.4

	Updated the database table descriptions to reflect the new database table design. Also moved functionality of checking files against manifest from the identify script to the unpack script.
	Jan 04, 2005
	p. 25-29,

p. 41 to end
	Draft v0.5

	Added CommandLogMetadata table to list of database tables. Updated FileLog description.

Updated Ingest system directory structure. Updated descriptions of processing scripts to reflect restructuring of database tables, changes made during release 2 testing and addition of data products for Release 3. Various editing corrections
	Apr 14, 2005
	All
	Draft v0.6

	New maintainer. Updated format, grammar, etc of all sections. No major revisions.
	May 2, 2005
	All
	Draft v0.7

	Added remaining products from Operations Data Products ICD
	May 9, 2005
	All
	Draft v0.8

	Added science data products
	June 11, 2005
	All
	Draft v0.9

	Added error messages. Various other updates.
	July 19, 2005
	All
	Draft v1.0

	Updated with comments and suggestions from document review.
	July 28, 2005
	All
	Draft v1.1

	Update science data products sections
	Nov 28, 2005
	All
	Draft v1.2

	Baselined version.
	Jan 31, 2006
	All
	Baselined

	Updates to verification, metadata extraction, and processing steps for science data products. Updates for Release 5.
	Apr 5, 2006
	Sections 6.8.4.9, 6.9.4, 6.11.4
	Draft v1.3

	Updates to extract.pl and process.pl descriptions for GBM trigger and burst data
	May 11, 2006
	All
	Draft v1.4

	Updates to verify.pl and various smaller clarifications and fixes.
	June 21, 2006
	All
	Draft v1.5

	Updates for GRT6, especially to processing of GBM Daily/Burst/Trigger products.
	August 30, 2006
	All
	Draft v1.6

	Multiple updates.
	June 20, 2007
	All
	Draft v1.7

	Updated flow charts. Added L0 processing branch description
	August 22, 2007
	Sections 3 & 4
	Draft v1.8

	Various updates
	November 10, 2008
	All
	v2.0

	Changed GLAST to Fermi
	August 21, 2009
	All
	

TABLE OF CONTENTS

xTABLE OF FIGURES

TABLE OF TABLES
xi
LIST OF ACRONYMS
1
1
Introduction
3
1.1
Related Documents
3
1.2
General Post-transfer Ingest
3
1.3
Data Specific Ingest
4
2
OPUS
6
2.1
OPUS Interfaces
6
2.1.1
OMG
6
2.1.2
PMG
7
2.2
Inside OPUS
8
2.2.1
Process Status Entry
8
2.2.2
Observation Status Files (OSF)
9
2.2.3
Path Files
11
2.2.4
Stage Files
11
2.2.5
Resource Files
13
3
Ingest System Pipeline Branches
17
3.1
Data Transfer
17
3.2
General Ingest Branch
17
3.3
FileData Branch
18
3.4
Command Branch
19
3.5
ProcessData Branch
20
3.6
Lev0Data Branch
21
4
Database Tables
23
4.1
Logging Tables
23
4.1.1
ReceiveLog
23
4.1.2
FileLog
23
4.1.3
ErrorLog
24
4.2
Tracking Tables
25
4.2.1
RetransmissionTracker
25
4.2.2
IngestTracker
25
4.2.3
FileDataTracker
26
4.2.4
CommandTracker
26
4.2.5
ProcessDataTracker
27
4.2.6
Lev0DataTracker
27
4.3
External Tables
28
4.3.1
LATCommands, GBMCommands, SCCommands, OpsCommands
28
4.3.2
LATProcs, GBMProcs, SCProcs, OpsProcs
28
4.3.3
ToOTracker
29
5
Operating Environment
30
5.1
OPUS Configuration
30
5.2
Environment Variables
30
5.3
Configuration Files
31
5.3.1
Main FSSC Configuration File
31
5.3.2
Main Ingest Configuration File
34
5.3.3
File Information Configuration File
35
5.3.4
TDAT Configuration File
38
5.4
Directory Structure
38
5.5
Archive Locations
39
6
Detailed Ingest Processing Script Descriptions
42
6.1
Common Functionality
42
6.2
backup.pl
44
6.2.1
Input
44
6.2.2
Effect
44
6.2.3
Triggers
44
6.2.4
Description
44
6.2.5
Possible Errors
45
6.2.6
Flow Diagram
45
6.3
staging.pl
46
6.3.1
Input
46
6.3.2
Effect
46
6.3.3
Triggers
46
6.3.4
Description
46
6.3.5
Possible Errors
47
6.3.6
Flow Diagram
47
6.4
unpack.pl
49
6.4.1
Input
49
6.4.2
Effect
49
6.4.3
Triggers
49
6.4.4
Description
49
6.4.5
Possible Errors
50
6.4.6
Flow Diagram
50
6.5
identify.pl
51
6.5.1
Input
51
6.5.2
Effect
51
6.5.3
Triggers
51
6.5.4
Description
51
6.5.5
Data-type Specific Actions
53
6.5.6
Possible Errors
54
6.5.7
Flow Diagram
55
6.6
cleanup.pl
56
6.6.1
Input
56
6.6.2
Effect
56
6.6.3
Triggers
56
6.6.4
Description
56
6.6.5
Possible Errors
57
6.6.6
Flow Diagram
57

verify.pl
59
6.7.1
Input
59
6.7.2
Effect
59
6.7.3
Triggers
59
6.7.4
Description
59
6.7.4.1
ToO Notifications and Acknowledgements
60
6.7.4.2
Ephemerides
60
6.7.4.3
LAT and GBM South Atlantic Anomaly Report
60
6.7.4.4
Eclipse Entry and Exit Reports
60
6.7.4.5
LAT and GBM South Atlantic Anomaly Definition Updates
60
6.7.4.6
Memory Loads
60
6.7.4.7
PROC Execution Requests
60
6.7.4.8
ATS Timelines
61
6.7.4.9
Science Data Products
61
6.7.4.9.1
GS-001 and GS-002 (CTIME and CSPEC Daily Version)
62
6.7.4.9.2
GS-005 (GBM Gain and Energy Resolution History)
63
6.7.4.9.3
GS-006 (Fermi Position and Attitude History)
63
6.7.4.9.4
GS-007 (GBM PHA Look-Up Tables)
63
6.7.4.9.5
GS-008 (GBM Calibration)
64
6.7.4.9.6
GS-101 and GS-102 (CTIME and CSPEC Burst Version)
65
6.7.4.9.7
GS-103 (GBM TTE)
65
6.7.4.9.8
GS-104 (GBM DRMs)
66
6.7.4.9.9
GS-105 (Trigger Catalog Entry)
67
6.7.4.9.10
GS-106 (Preliminary Burst Catalog Entry)
67
6.7.4.9.11
GS-107 (GBM TRIGDAT)
68
6.7.4.9.12
GS-108 (GBM Background Files)
68
6.7.4.9.13
LS-001 (LAT Event Summary Data)
69
6.7.4.9.14
LS-002 (LAT Photon Summary Data)
70
6.7.4.9.15
LS-005 (LAT Pointing and Livetime History)
70
6.7.4.9.16
LS-008 (LAT Point Source Catalog)
70
6.7.4.9.17
LS-009 (LAT Burst Catalog)
71
6.7.4.9.18
LS-010 (LAT Interstellar Emission Model)
71
6.7.4.9.19
LS-011 (LAT Energy Redistribution)
71
6.7.4.9.20
LS-012 (LAT Effective Area)
72
6.7.4.9.21
LS-013 (LAT Point Spread Function)
72
6.7.5
Possible Errors
73
6.7.6
Flow Diagram
74
6.8
archive.pl
75
6.8.1
Input
75
6.8.2
Effect
75
6.8.3
Triggers
75
6.8.4
Description
75
6.8.5
Possible Errors
76
6.8.6
Flow Diagram
76
6.9
extract.pl
78
6.9.1
Input
78
6.9.2
Effect
78
6.9.3
Triggers
78
6.9.4
Description
78
6.9.4.1
Level 0 Data
79
6.9.4.2
Integrated Observatory Timeline
79
6.9.4.3
ToO Acknowledgements and Notifications
80
6.9.4.4
MOC Command Logs
80
6.9.4.5
Fermi and TDRSS Ephemerides
81
6.9.4.6
As-Flown Timeline
81
6.9.4.7
Requested TDRSS Contact Schedule
81
6.9.4.8
TDRSS Forecast Schedule
82
6.9.4.9
LAT and GBM South Atlantic Anomaly Reports
82
6.9.4.10
Eclipse Entry and Exit Report
82
6.9.4.11
Memory Loads, PROC Execution Requests, and Science Timelines
83
6.9.4.12
LAT and GBM South Atlantic Anomaly Definition Updates
84
6.9.4.13
Data Retransmission Requests
84
6.9.4.14
GBM Daily Data
85
6.9.4.15
GBM Trigger and Burst Data
86
6.9.4.15.1
GS-101, GS-102, GS-103, GS-104, GS-107, GS-108
86
6.9.4.15.2
GS-105 (Trigger Catalog Entry)
86
6.9.4.15.3
GS-106 (Burst Catalog Entry)
87
6.9.4.16
GS-007 (GBM PHA Lookup Tables)
88
6.9.4.17
GS-008 (GBM Calibration)
88
6.9.4.18
LS-001 (LAT Event Summary Data)
89
6.9.4.19
LS-002 (LAT Photon Summary Data)
89
6.9.4.20
LS-005 (LAT Pointing and Livetime History)
90
6.9.4.21
LS-006 (LAT Configuration History)
90
6.9.4.22
LS-007 (LAT Transient Parameters)
90
6.9.4.23
LS-008 (LAT Point Source Catalog)
91
6.9.4.24
LS-009 (LAT Burst Catalog)
91
6.9.4.25
LS-010 (Interstellar Emission Model)
91
6.9.4.26
LS-011 (LAT Energy Redistribution)
91
6.9.4.27
LS-012 (LAT Effective Area)
92
6.9.4.28
LS-013 (LAT Point Spread Function)
92
6.9.5
Possible Errors
92
6.9.6
Flow Diagram
93
6.10
priority.pl
94
6.10.1
Input
94
6.10.2
Effect
94
6.10.3
Triggers
94
6.10.4
Description
94
6.10.5
Possible Errors
95
6.10.6
Flow Diagram
95
6.11
process.pl
96
6.11.1
Input
96
6.11.2
Effect
96
6.11.3
Triggers
96
6.11.4
Description
96
6.11.4.1
L0 Data
97
6.11.4.2
GBM Daily Data
97
6.11.4.3
GBM Trigger and Burst Data
97
6.11.4.4
LAT Event and Photon Summary Data
98
6.11.4.5
LAT Pointing and Livetime History
98
6.11.4.6
LAT Point Source and Burst Catalogs
98
6.11.5
Possible Errors
98
6.11.6
Flow Diagram
99
7
Script Error/Exit Codes
100

TABLE OF FIGURES

7Figure 1 - Screen shot of the Observation Manager for the FileData processing pipeline.

Figure 2 - Screen shot of the Process Manger for the general Ingest path.
7
Figure 3 - Flow chart for the main processing stages of the General Ingest branch.
18
Figure 4 - Flow chart for the main processing stages of the FileData branch.
19
Figure 5 - Flow chart for the main processing stages of the Command branch.
20
Figure 6 - Flow chart for the main processing stages of the ProcessData branch.
21
Figure 7 - Flow chart for the main processing stages of the Lev0Data branch.
22
Figure 8 - $GSSCHOME directory structure
38
Figure 9 - $GSSCOPS directory structure
39
Figure 10 - Flow diagram for the backup.pl script
45
Figure 11 - Flow diagram for the staging.pl script.
48
Figure 12 - Flow diagram for the unpack.pl script.
50
Figure 13 - Flow diagram for the identify.pl script.
55
Figure 14 - Flow diagram for the cleanup.pl script.
58
Figure 16 - Flow diagram for the verify.pl script.
74
Figure 16 - Flow diagram for the acrhive.pl script.
77
Figure 17 - Flow diagram for the extract.pl script.
93
Figure 18 - Flow diagram for priority.pl script
95
Figure 19 - Flow diagram for process.pl script
99

TABLE OF TABLES

30Table 1 - OPUS status codes

Table 2 - OPUS Environment Variables
31
Table 3 - Environment variables used by Ingest System
31
Table 4 – Parameters and descriptions from the main GSSC configuration file used by Ingest.
32
Table 5 - Parameters names and descriptions for main ingest configuration file.
35
Table 5 - Description of the elements and attributes of file format configuration file.
36
Table 6 - Elements of TDAT configuration file
38
Table 7 - Archive Locations for GLAST Data Types
40
Table 8 - Common error conditions in all scripts
43
Table 9 - Standard Keywords and Values
62
Table 10 - Required keywords and values for GS-001 and GS-002
62
Table 11 - Required keywords and values for GS-005
63
Table 12 - Required keywords and values for GS-006
63
Table 13 - Required keywords and values for GS-007
64
Table 14 - Required keywords and values for GS-008
64
Table 15 - Required keywords and values for GS-101 & GS-102
65
Table 16 - Required keywords and values for GS-103
65
Table 17 - Required keywords and values for GS-104
66
Table 18 - Required keywords and values for GS-105
67
Table 19 - Required keywords and values for GS-106
68
Table 20 - Required keywords and values for GS-107
68
Table 21 - Required keywords and values for GS-108
69
Table 23 - Required keywords and values for LS-002
69
Table 22 - Required keywords and values for LS-002
70
Table 23 - Required keywords and values for LS-005
70
Table 25 - Required keywords and values for LS-008
70
Table 26 - Required keywords and values for LS-009
71
Table 27 - Required keywords and values for LS-010
71
Table 28 - Required keywords and values for LS-011
71
Table 29 - Required keywords and values for LS-012
72
Table 30 - Required keywords and values for LS-013
73
Table 31 - All Error Codes for Ingest scripts
100

LIST OF ACRONYMS
	API
	Application Programming Interface

	ASTL
	As-Flown Timeline

	DASS
	Data Archive and Software Support

	DCF
	Data Classification Field

	DRM
	Detector Response Matrix

	FOT
	Flight Operations Team

	FITS
	Flexible Image Transport System

	FSSC
	Fermi Science Support Center

	GBM
	Gamma Ray Burst Monitor

	GCN
	Gamma Ray Burst Coordinates Network

	GRB
	Gamma Ray Burst

	GI
	Guest Investigator

	GIOC
	GBM Instrument Operations Center

	GLAST
	Gamma-ray Large Area Space Telescope

	GSFC
	Goddard Space Flight Center

	GSSC
	GLAST Science Support Center

	GUI
	Graphical User Interface

	HEASARC
	High Energy Astrophysics Science Archive Research Center

	ICD
	Interface Control Document

	IOC
	Instrument Operations Center

	IRF
	Instrument Response Function

	ISOC
	Instrument Science Operations Center

	IOTL
	Integrated Observatory Timeline

	LAT
	Large Area Telescope

	LISOC
	LAT Instrument Science Operations Center

	MD5
	Message Digest algorithm 5

	MJD
	Modified Julian Date

	MOC
	Mission Operations Center

	MPS
	Mission Planning System

	NASA
	National Aeronautics and Space Administration

	NOST
	NASA/Science Office of Standards and Technology

	OGIP
	Office of Guest Investigator Programs

	OMG

	Observation Manager OPUS GUI

	OSF
	Observation Status File

	PDB
	Project Database

	PI
	Principal Investigator

	PROC
	STOL procedure for the telemetry and command system

	PMG

	Process Manager OPUS GUI

	SAA
	South Atlantic Anomaly

	SCTL
	Spacecraft Timeline

	SQL
	Structured Query Language

	STOL
	Spacecraft Test and Operation Language

	STK
	Satellite Tool Kit

	TAKO
	Timeline Assembler, Keyword Oriented

	TDAT
	Transportable Database Aggregate Table

	TDRSS
	Tracking and Data Relay Satellite System

	TJD
	Truncated Julian Day. Equals MJD – 40000.

	ToO
	Target of Opportunity

	TT
	Terrestrial Time

	TTE
	Time Tagged Events

	UTC
	Coordinated Universal Time

1 Introduction

This document describes the design of the FSSC’s Data Ingest System. The function of the Ingest System is to process (unpack, verify, etc.) files that have been transferred to the FSSC and archive them to appropriate locations for storage or for further post-processing, depending on the type of file. The Ingest pipeline is implemented as a series of Perl scripts called by the OPUS pipeline manager. The goal of the Ingest design is to implement a simple, flexible, but robust, pipeline system that can be maintained and expanded to include new types of files with a minimum of effort.

The basic flow of data works as such. After a file has been transferred to the FSSC, the Ingest pipeline is triggered. The pipeline creates a back-up copy of the file and moves it to a staging area. According to Fermi specifications (e.g., the Operations Data Products ICD), this file will be a tar format file containing the actual data products. The tar file is unpacked and the contents of the file are identified (e.g., Level 0 files). Depending on the type of file, the Ingest System verifies the file integrity (e.g., checksums are tested), extracts metadata (e.g., timestamps, FITS keywords), and moves the file to an archive area appropriate for the type of file for later processing or storage. The results of all steps are written to various database tables, as is any metadata extracted.

1.1 Related Documents

The following documents contain related information. It is assumed that the reader has some familiarity with the contents of the FSSC documents, particularly the ICDs.

FSSC documents:

· Operations Data Products ICD (GLAST-GS-ICD-0002)

· Science Data Products ICD
(GLAST-GS-DOC-0006)
· Science Data Products File Format Document (GLAST-GS-DOC-0001)
· FSSC Design Document (GSSC-0003)

· Operations System Detailed Design (GSSC-0010)

External documents:

· OPUS User’s Guide (http://ess.stsci.edu/products/opus/faq/opusfaq.html)

1.2 General Post-transfer Ingest

A post-transfer script triggers the OPUS pipeline when a file has been received from another part of the Fermi ground system. The script also creates database entries in FileLog table that holds information about the file (current location, checksum, etc.), and the IngestTracker table, which tracks the processing steps.

The steps in the general pipeline are:

	Backup
	The first step is to copy the received file to a backup directory before any further processing or unpacking is done. This backup directory will keep the unprocessed data for two weeks after it has been processed. If the file has not been processed after two weeks, an alert will be sent to the operators
.

	Move to Staging
	The received file is then moved out of the incoming file directory to a temporary directory in the staging area for unpacking and processing of the file contents. The temporary directory is named by appending “_dir” to the file name.

	Unpack
	The contents of the incoming file are then unpacked. The Ingest system expects the incoming file to be a tar format archive file.

	Identify
	All resulting files from the unpacking are checked against regular expressions based on the definitions in the Operations and Science Data Products ICDs to uniquely match the files to types of data products. The data file is then moved to a processing directory for that specific type of file. An entry for each data file is created in the FileLog database table and in a tracking table specific for that type of data. The manifest file, which lists all the files transferred and their checksums, is checked to make sure that all the expected files arrived and have not been corrupted (i.e., the checksums are compared). This process step also checks that message files have been transferred for those types of files that require them (e.g., memory loads, PROCs).

The start and stop times of each of these processes are logged to the IngestTracker database table.

1.3 Data Specific Ingest

Once a data product is identified, it goes to another OPUS pipeline depending on its type. There are four types of data in the Ingest system. FileData are data that simply need to be stored on this disk. CommandData are files, like memory loads, commands, and instrument timelines, which may require immediate action, such as forward to the MOC. ProcessData are data that the FSSC use to produce other data products, such as the LAT event summary files. Lev0Data are Level 0 files that are stored although some are redacted and forwarded to the LISOC. The specifics of each process depend on the data type although the steps that it goes through are similar: archival storage, verification, and metadata extraction. Each stage of processing is tracked in a data specific tracker table. The processing steps are:

	
	

	
	

	Priority

Check
	For CommandData files only, the PRIORITY keyword is checked. If the priority is HIGH, the command file is immediately forwarded to the MOC.

	
	

	Verify
	The purpose of the verification step is to perform sanity and integrity checks on the file. For many types of files, the only verification step is to make sure that the checksum still matches that in the initially stored in the database (e.g., the file has not been corrupted by the Ingest system). For data types that have message files, the internal checksum of the message file is checked, and the data file checksum stored in the message file is compared against the data file. For other types of data, verification includes comparing the data file format against that defined in the appropriate ICD.

	
	

	Archive
	After a file has been received in the processing directory, it is copied to a permanent storage location and the location stored in the database updated to reflect this new location.

	
	

	Extract Metadata
	Once a file has been verified, information about the data is extracted and written to a database table. For example, for Level 0 files, the metadata is simply the virtual channel number, application id, and the date. These are taken directly from the file name. For other types of data, metadata may include information extracted from FITS keywords, data file headers, or start time of data validity.

	
	

	Generate Derived Data
	For ProcessData files, this step will produce the derived data products required from the transmitted files. This processing will not always be present, but when it is it will be executed after the metadata for the original data has been extracted.

2 OPUS
The core of the data ingest pipeline is OPUS. This software was originally developed at the Space Telescope Science Institute for processing the Hubble Space Telescope data. It provides a lightweight, flexible backbone on which to design a distributed data processing system. OPUS can control “multiple instances of multiple processes in multiple pipelines on multiple computers.” It provides monitoring of processes and data and controls the execution of the various portions of the data processing pipeline using a “blackboard” system. Each process or dataset has an entry on the blackboard that provides state information about it. The software package also provides two GUIs for monitoring the pipelines, one process oriented and the other data oriented.

This section describes how OPUS works. Specific details related to its implementation for the Ingest System are discussed in Section 5.

2.1 OPUS Interfaces

This section describes the two graphical user interfaces to OPUS the Process Manager (PMG) and the Observation Manager (OMG). These interfaces are written in Java and can be installed and run on any computer with sftp access to the system on which the OPUS blackboard server is running.

2.1.1 OMG

The OMG, or Observation Manager, provides a data centered view of the various pipelines. Figure 1 shows the OMG view for a typical processing pipeline. The OMG shows the time the processing started, the name of the data being processed and the status of the various stages of the processing. In Figure 1, all of the data has been processed successfully (the ‘c’ entries indicate successful completion of a stage) except for the last file that had an error (indicated by the red ‘e’) in the CU or ‘cleanup’ stage of the pipeline.

With the OMG you can switch between various paths as well as edit the status of the various entries. For full details on using the OMG see the OPUS User’s Guide at http://ess.stsci.edu/products/opus/faq/opusfaq_jomg.htm.

[image: image1.png]
Figure 1 - Screen shot of the Observation Manager for the FileData processing pipeline.
2.1.2 PMG

The PMG, or Process Manager, provides a path/process oriented view of the pipeline system. Figure 2 shows the PMG while looking at the general Ingest path.

[image: image2.png]
Figure 2 - Screen shot of the Process Manger for the general Ingest path.

The tree structure on the left is an organized view of all the available processes that can be added to the pipeline. These processes are organized by the values entered in the process resource files for the SYSTEM and CLASS keywords.

The tabs across the top of the right section correspond to the various paths that have been defined for your system. Clicking on the tabs takes you to a view of the processes for that path. In the figure, we are looking at the processes for the Ingest path. For each process, various information, such as the process id, process name, status, and computer on which the process is running, is displayed. Processes can be added to a path by dragging their name from the left pane into the right pane, which will place the process in a ‘pending’ status. Clicking on the process in the right pane and selecting ‘Start Pending’ from the ‘Manage’ menu across the top starts the process.

For full details on how to use the Process Manger to control and manipulate the pipelines see the OPUS User’s Guide at http://ess.stsci.edu/products/opus/faq/opusfaq_jpmg.html.

2.2 Inside OPUS

OPUS monitors the pipeline processes using a “blackboard” system. The blackboard contains information about the state of each process or data set. Originally, the blackboard was the file system. The current version of OPUS uses an internal blackboard running on a CORBA server. The file system is still used, however, as a backup that is updated quite frequently (several times a second). The details of these process and dataset entries are described in Sections 2.2.1 & 2.2.2 below.

The logic used by OPUS to control the execution of the pipeline is configured using a series of path, stage and resource files which tell OPUS about various environment settings, the components of the various parts of the pipeline and the details of when and how to trigger specific processing scripts. These files are described in Sections 2.2.3, 2.2.4 & 2.2.5 below.

OPUS uses the term ‘path’ to refer to an individual pipeline or pipeline branch and the configuration and interface with the system is path oriented. The terms path and branch are used interchangeably throughout the rest of this document.

2.2.1 Process Status Entry

Each process running and monitored by OPUS will have a process status entry that monitors its state. This entry is stored in the OPUS blackboard and is mirrored on the file system in the $GSSCOPS/OPUS/home directory. The format of these entries (taken directly from the OPUS User’s guide) is the following:

 00006426-getkw___-idle___________.340d7ed9-g2f______-area51-____

 |-- 1 -| |-- 2 -| |----- 3 -----| |-- 4 -| |-- 5 --| |- 6 | | 7|

The components of the entry are:

1. PID: This portion of the process status entry contains the process ID (00006426) assigned by the system at run time (in hex format for historical reasons). The process ID is used to distinguish between multiple versions of the same process running on the same node.

2. PROCESS: This field of the process status entry reflects the process name (getkw in this example). This information is displayed under the "process" column of the PMG display. The default size of this field is 10 characters, so this is the default maximum size of a process name.

3. STATUS: This portion of the process status entry contains the status of the pipeline process ("idle"). Some common values of this field are: working, suspended, idle, iowait, starting, absent (process has exited due to an error), or the name of the dataset that the process is currently working on. This information is displayed under the "proc_stat" column of the PMG.

4. START TIME: This portion of the process status entry contains a time stamp (340d7ed9) representing when the process was started (in hexadecimal format). This information is converted to user-friendly date-time text and is displayed under the "start_time" column of the PMG.

5. PATH: This portion of the process status entry contains the name of the path under which the process is running (g2f). This information is displayed under the "Path" column of the PMG. The default size of this field is 9 characters, so this is the maximum default size of a path name root.

6. NODE: This portion of the process status entry contains the name of the machine on which the process is running (area51). This information is displayed under the "Node" column of the PMG. Note: the default size of this field is 20 characters, so this is the default maximum node name length.

7. COMMAND: This portion of the process status entry is the command area. This tells the process to perform a specific task. In this example, the process status entry contains only underscores (i.e., is "blank"); therefore, the process will continue its normal operation. Possible values for this field are: halt, susp, resu, and init. The commands are issued using the "Manage" menu selection of the PMG menu bar. The command values will tell the process to terminate processing, suspend processing, resume processing, or reinitialize the process, respectively. This information is displayed under the "proc_cmd" portion of the PMG.

2.2.2 Observation Status Files (OSF)

Each dataset is monitored by an Observation Status File (OSF) entry on the OPUS blackboard, similar to the process status files. This OSF entry is also mirrored on the file system in a directory specified in the path file for the branch of the pipeline. An OSF entry has the following format (again taken directly from the OPUS User’s Guide):

34070859-cccccc______.gif9703___________________________________-GIF-000-____

|-- 1 -| |--- 2 ----| |------------------ 3 -------------------| |4| |5| |6 |

The various components of the OSF entry are:

1. TIME STAMP: The first component of the OSF is a time stamp expressed as a hexadecimal number (34070859). This is the time at which the observation first started in the pipeline. It is translated into a user-friendly ASCII time and displayed in the "time_stamp" field of the OMG display. You can use the time_stamp utility to make the same translation.

2. STATUS: These letters indicate the status of the observation (cccccc, i.e., the first six steps in the pipeline are "complete"). Typically, one column is used for one process in the pipeline, although multiple processes can share a column. The order of the columns is defined in the pipeline.stage file (described in Section 2.2.4), which also controls the two character mnemonics (OSF stage) used in the OMG title bar and the meanings associated with each status. Each process will set status fields for the observation based on whether the processing was successful or not. Any alphanumeric character permissible in a file name can be used in these fields. The actual characters used are specified in process resource files and their meanings are defined in the pipeline.stage file. The default size of this field is 24 characters, so this is the default maximum number of stages in a pipeline.

3. DATASET: This field contains the name of the observation or dataset (gif9703). The OMG displays this in the "OBS" column. The default size of this field is 64, so this is the default maximum size of a dataset name. The OSF_DATASET environment variable is set to this value.

4. DATA ID: This field is called the datatype of the observation or dataset (GIF in this example). Processes use this value to determine what kind of observation is coming down the pipeline and whether that kind of observation is to be processed. The OMG displays this field in the "data_id" (class) column. The default size of this field is 3 characters. The OSF_DATA_ID environment variable is set to this value.

5. DCF NUMBER: This field contains an optional identifier of the observation (000). Called the Data Classification Field (DCF). The OMG allows the user to sort the display using this field. Consequently if there are meaningful attributes that can be used to classify the datasets, they can be set in this field. For example, one might use this field to specify the source of the dataset. The default size of this field is 3 characters. It is displayed in the "dcf_num" column of the OMG. The OSF_DCF_NUM environment variable is set to this value.

6. COMMAND: This portion of the OSF is the command area (all underscores, or blank, in this example). This field provides the capability to SUSPend an observation. As an example, if it is known that a particular reference file is required by a calibration step for this one observation, this observation can be SUSPended in the pipeline before reaching calibration without affecting the processing of other observations. The OMG provides the capability both to SUSPend an observation and to RESUme it. The command is displayed in the "obs_cmd" column of the OMG.

2.2.3 Path Files

Path files describe the environment that the processing will take place in. The path files have the following format: a base filename with a maximum size given by the maximum size of the PATH field in the process status and the “.path” suffix

The OPUS path files define three different sets of data. The first is the name of the stage file (Section 2.2.4) for this particular pipeline path. The second is the location of the OSF entries for this path. Finally, the remainder of the file is used to bind logical names to the directories or other information that is used by the processing stages of the pipeline. This allows us to write scripts that use a given logical name for a directory and have it operate on different directories in different pipeline paths without having to change the script. Each path can assign different values to the logical names. You can think of path files as a way of setting environment variables that are local to the specified path. Here is a sample path file for the general Ingest path of the pipeline system:

!--

! Ver Date
Number
Author Reason

!--

! 000 05/20/04 000001 Tom S. First attempt

!--

!

! PATH file for test main GSSC ingest pipeline.

!

!--

!

 STAGE_FILE = OPUS_DEFINITIONS_DIR:Ingest_pipeline.stage

 OPUS_OBSERVATIONS_DIR = /devtools/OPUS/GSSC/Ingest/obs/general

 new_data = /devtools/OPUS/GSSC/Ingest/data/fastcopy/

 input_data = /devtools/OPUS/GSSC/Ingest/data/indir/

 staging_data = /devtools/OPUS/GSSC/Ingest/data/staging/

 backup_data = /devtools/OPUS/GSSC/Ingest/data/backup/

2.2.4 Stage Files

Stage files define the components of the pipeline, specifying their display order, the possible status values and a description of the processing step. It does not control the execution order. That is determined by information in the process resource files (Section 2.2.5 below). Here is an example of the stage file for the general Ingest path (including instructive comments).

!

! Ingest_pipeline.stage

!

! Pipeline stage files define the title, description, and status values

! for each stage of a data processing pipeline. The number of stages is

! defined by the required key NSTAGE.

!

! Each stage entry begins with the class STAGEnn where nn is a number between

! 01 and 99 (the number must be formatted as two digits) that indicates where

! a stage falls in the processing order (the first stage is 01, the second 02,

! and so on). Valid subclasses include:

!

! .TITLE (required) a two character title for the stage

! .DESCRIPTION (required) a short description for the stage

! .PROCESSnn (optional; nn : 01 to 99) a process name for that stage

!

! (NOTE: all values containing spaces must be enclosed in single quotes)

!

! In addition, the characters that indicate the status of a dataset with

! respect to each stage are defined in this file. There are four subclasses

! to which a status character can be assigned to:

!

! .CSTATUS.c status indicates "complete" in this stage

! .TSTATUS.c status indicates "trouble" in this stage

! .PSTATUS.c status indicates "pending" in this stage

! .NSTATUS.c status does not fall into any category

!

! where c is the status character. The value for each of these entries

! should be a short description of its meaning. For example,

!

! STAGE01.CSTATUS.P = 'Processing dataset'

! STAGE01.TSTATUS.E = 'Fatal error while processing dataset'

! STAGE01.NSTATUS.W = 'Waiting for processing'

!

! Status characters must be categorized consistently across all stages; if

! a character is assigned as a CSTATUS for one stage, that same character

! cannot be assigned to TSTATUS, PSTATUS, or NSTATUS in another stage.

!

!--

NSTAGE = 6

STAGE01.TITLE = IN

 STAGE01.DESCRIPTION = 'DATA INIT'

 STAGE01.CSTATUS.C = 'Data file recognition complete'

 STAGE01.TSTATUS.X = 'External process controller error'

STAGE02.TITLE = BK

 STAGE02.DESCRIPTION = 'Data Backup'

 STAGE02.NSTATUS.W = 'Waiting to backup data'

 STAGE02.PSTATUS.P = 'Data backup in progress'

 STAGE02.CSTATUS.C = 'Data backup complete'

 STAGE02.TSTATUS.E = 'Error occurred during data backup'

 STAGE02.TSTATUS.X = 'External process controller error'

STAGE03.TITLE = MV

 STAGE03.DESCRIPTION = 'Moving transmitted data'

 STAGE03.NSTATUS.W = 'Waiting to move data'

 STAGE03.PSTATUS.P = 'Data move in progress'

 STAGE03.CSTATUS.C = 'Data move complete'

 STAGE03.TSTATUS.E = 'Error occurred during data move'

STAGE04.TITLE = UP

 STAGE04.DESCRIPTION = 'Unpacking transmitted data'

 STAGE04.NSTATUS.W = 'Waiting to unpack data'

 STAGE04.PSTATUS.P = 'Data extraction in progress'

 STAGE04.CSTATUS.C = 'Data extraction complete'

 STAGE04.TSTATUS.E = 'Error occurred during data extraction'

STAGE05.TITLE = PR

 STAGE05.DESCRIPTION = 'Processing new data'

 STAGE05.NSTATUS.W = 'Waiting to process data'

 STAGE05.PSTATUS.P = 'Data processing in progress'

 STAGE05.CSTATUS.C = 'Data processing complete'

 STAGE05.TSTATUS.E = 'Error occurred during data processing'

STAGE06.TITLE = CL

 STAGE06.DESCRIPTION = 'Pipeline cleanup'

 STAGE06.NSTATUS.W = 'Waiting for deletion of related data files'

 STAGE06.NSTATUS.P = 'Deleting unneeded files'

 STAGE06.NSTATUS.D = 'Waiting for deletion of OSF '

 STAGE06.TSTATUS.E = 'Error occurred during pipline cleanup'

The .TITLE field specify the id tag that are used in the Observation Manager (OMG) to identify the stage. The other fields provide descriptions of the stage and the various possible status codes that can be used for that stage.

2.2.5 Resource Files

The process resource file is used to configure the exact behavior of the processing stage. It defines the conditions necessary to trigger the stage, the command to execute when the stage is triggered and the effects that should take place depending on the successful or unsuccessful completion of the processing stage. The resource file can be quite complex depending on what the processing stage needs to do. Below is a simple example of the resource file for the backup stage of the general Ingest pipeline along with a description of its components. For a full description of the possible contents of process resource files, see the OPUS documentation at: http://ess.stsci.edu/products/opus/faq/opusfaq_prsc.htm.

We’ll start by looking at the entire file and then break it down by parts:

!--

!
BACKUP RESOURCE FILE

!--

! REVISION HISTORY

!--

! MOD PR

! LEVEL DATE NUMBER User Description

! ----- -------- ------ ------ ------------------------------------

! 000 05/11/04 Tom S. Created

!--

SYSTEM = 'INGEST_PIPELINE'

CLASS = all

TASK = <xpoll -p $PATH_FILE -r backup>

PROCESS_NAME = backup

! Short name for process id

DESCRIPTION = ' Backup the data to the archive directory'

DISPLAY_ORDER = 2

COMMAND = backup.pl

! Name of the command procedure

XPOLL_STATE.00 = OSF_OK

XPOLL_STATE.01 = OSF_ERROR

XPOLL_STATE.02 = OSF_ERROR

OSF_RANK = 1

! First Trigger

OSF_TRIGGER1.BK = w

! Need a 'Wait' flag in KW column

OSF_PROCESSING.BK = p

! Set the processing flag to 'Processing'

OSF_OK.BK = c

! Completed Keyword generation

OSF_OK.MV = w ! Next stage is 'Wait'

OSF_ERROR.BK = e

! Error: Set the error flag

XPOLL_ERROR.BK = x ! Unexpected Error: exit status != 1,3,5

POLLING_TIME = 10

! Wait (seconds) before polling for next

ENV.INPATH = input_data
! Directory where the input files are found

MINBLOCKS = 50000

ENV.OUTPATH = backup_data
! Directory where output files are written

The syntax of the resource file is a simple ‘keyword=value’ format with an optional comment at the end of the line. Comments are delimited by the ‘!’ character and proceed to the end of the line. Values do not need to be quoted (single quotes) unless they contain spaces.

The first three lines
SYSTEM = 'INGEST_PIPELINE'

CLASS = all

TASK = <xpoll -p $PATH_FILE -r backup>

are required by the OPUS system for all resource files. The first two are used to build the process tree in the Process Manager (PMG). The third is command that OPUS will use to invoke the processing stage when it is started. xpoll is a external polling process that is provided by OPUS to allow you to link your scripts and programs directly into the OPUS blackboard system without rewriting and linking your code with the OPUS API.

The next three lines,

PROCESS_NAME = backup

! Short name for process id

DESCRIPTION = ' Backup the data to the archive directory'

DISPLAY_ORDER = 2

are optional and provide a short description of the process and provide information to the OMG that is used in displaying the processes and for tool tips in the user interface.

The next lines are required by any process that uses the external poller (xpoll):

COMMAND = backup.pl

! Name of the command procedure

XPOLL_STATE.00 = OSF_OK

XPOLL_STATE.01 = OSF_ERROR

XPOLL_STATE.02 = OSF_ERROR

The COMMAND line gives the name of the program or script that should be executed for this stage of the process. The only requirement is that it must be able to be located using the $PATH environment variable. The other lines map the exit codes of your program or script into messages that are used by OPUS and defined later in the resource file. The syntax is XPOLL_STATE.NN = status_message, where NN is the exit code of the program or script (and must be between 0 and 99) and status_message is the internal id given to that exit code. The value of status_message is used later in the resource file to control different effects.

The next two lines control the triggering of the process.

OSF_RANK = 1

! First Trigger

OSF_TRIGGER1.BK = w

! Need a 'Wait' flag in BK column

OSF_RANK is a priority for the trigger. The OSF_TRIGGER1.BK entry specifies the trigger for this particular stage. The 1 specifies that this is the first trigger (there can be multiple triggers for a given stage). The ‘BK’ value specifies that we should look at the entry on the blackboard for the backup stage (the 2-character codes that are used here are the ones described in the stage files) to see if it has a ‘w’ status. If that condition is met, then the stage is triggered. The trigger logic can be simple as above or as complex as desired including time information, file information and any combination of information about other parts of the processing pipeline. For full details on types of triggers see the OPUS documentation.

The next few lines tell OPUS what to do during the processing of the data and upon completion of the processing based on the exit codes of the scripts.

OSF_PROCESSING.BK = p

! Set the processing flag to 'Processing'

OSF_OK.BK = c

! Completed Keyword generation

OSF_OK.MV = w ! Next stage is 'Wait'

OSF_ERROR.BK = e

! Error: Set the error flag

XPOLL_ERROR.BK = x ! Unexpected Error: exit status != 1,3,5

The OSF_PROCESSING entry(s) tell OPUS what action to take when the processing begins. In this case, mark the BK stage with a ‘p’ indicating that it is processing data. The OSF_OK and OSF_ERROR entries correspond to the status_messages that we described earlier in the file and provide the action to be taken when those occur. The final entry XPOLL_ERROR is an internal status_message generated by OPUS when the xpoll process exits abnormally. This usually indicates a serious error such as the program or script specified with the COMMAND entry doesn’t exist, the node the process is running on has crashed or the disk is full (more on checking disk full conditions in a moment). This status message is also generated when the command exits with an error code not captured in the XPOLL_STATE.XX definitions.

The final lines provide various information to the poller, define environment variables and set up some basic resource checking.

POLLING_TIME = 10

! Wait (seconds) before polling for next

ENV.INPATH = input_data
! Directory where the input files are found

MINBLOCKS = 50000

ENV.OUTPATH = backup_data
! Directory where output files are written

The POLLING_TIME entry tells the xpoll process how often to check the blackboards to see if the trigger conditions are met. The value is a time in seconds. Environment variables can be set for the processing program or script by use of the ENV.XXXXXX command in the resource file. The characters after ‘ENV.’ become the name of the environment variable that are available to the process. The value after the ‘=’ becomes the value of the environment variable. If the value after the ‘=’ is one of the logical names assigned in the path file, the value in the path file is substituted when the environment variable is created. This allows the process to be used in multiple paths and behave differently based on the path without changing the script or resource file. Finally, the MINBLOCKS entry specifies the number of 512 byte disk blocks that must be available for the process to run. If this keyword is used the ENV.OUTPATH keyword must also be present. The directory given by ENV.OUTPATH is checked to see if there is enough disk space. If there is the process is allowed to trigger. If not, the process will suspend with an iowait error in the PMG until the problem is resolved.
3 Ingest System Pipeline Branches

This section describes the various branches (OPUS paths) of the ingest system, including which scripts are executed, the data that each branch handles, and provides flow diagrams of the data flow through the processing branch.

In the diagrams that follow, green lines and arrows indicate the nominal path through the system when no errors are encountered. Red objects (or objects with red borders) represent error codes being reported or processes that handle errors. The blue dashed boxes enclose the functionality of the unit specified by the blue text in the corner of the box. Filled blue objects represent processes that are expanded in other flowcharts and which may have different functionality depending on the type of data being processed. Green objects indicate successful termination points and gray objects represent components external to the Ingest system.

3.1 Data Transfer

While not specifically part of the ingest system, data transfer is mentioned here as it is the trigger for the start of the ingest process. Transferred files are placed in an incoming directory. As part of the file transfer process, a post-transfer script is executed. This script creates a new entry in the ReceiveLog, FileLog, and IngestTracker database tables for the file, runs the osf_create command to create a new OPUS pipeline for the file, and finally moves the file to the initial staging area.

3.2 General Ingest Branch

The general ingest branch handles all data that is transferred to the FSSC by other Ground System Elements. It performs some general, mostly data-type generic processing such as making a backup copy, moving the data to the processing staging area, unpacking the data from the transfer archive, and identifying the data received and initiating the data specific processing branches. Once all the files have been successfully processed, the pipeline cleans up and removes any temporary files generated or files not needed by the later stages of the pipeline.

This branch uses the backup.pl, staging.pl, unpack.pl, identify.pl, and cleanup.pl scripts during its operation. Figure 3 shows the general flow of data through the general Ingest pipeline. Detailed flow diagrams for the various scripts are provided as figures accompanying the detailed script specifications provided in Section 6.

[image: image4.png]
Figure 3 - Flow chart for the main processing stages of the General Ingest branch.
3.3 FileData Branch

The FileData branch of the pipeline handles all data files that are for internal use by the FSSC as part of its normal operations but which are not published to the public. Typically, these files are logged in our data tracking databases and then stored in specific locations on the operations computers to be used an inputs into various tools (e.g., ephemeris files). This branch also handles Level 0 files, which are simply stored in an archive.

When a file arrives in this branch, a copy of the file is placed in the appropriate archive location. The file and data integrity is then checked to verify that there are no problems with the data. If there are problems, the file is removed from the archive and a message is sent to the source indicating what the problem was.
 If the file is good, the appropriate metadata for the file are extracted and placed in the database. Once all the processing is done, any unneeded files are removed.

This branch makes use of the archive.pl, verify.pl, extract.pl, and cleanup.pl scripts. The data products are archived in various locations depending on how they will be used. For example, ephemeris files and commands are placed under a root directory (e.g., $GSSCOPS/ops/ephemeris) where they can be accessed by the TAKO scheduler, while Level 0 files, which will likely never need to be accessed by the FSSC, are stored on another disk. The storage locations are not fixed and can be modified by changing the ingest_files.xml file discussed in Section 5.3.

Figure 4 shows the general flow of data through this branch of the pipeline. Detailed flow diagrams for the various scripts are provided as figures accompanying the detailed script specifications provided in Section 6.

Figure 4 - Flow chart for the main processing stages of the FileData branch.

3.4 Command Branch

This branch of the ingest system handles all command files (e.g., PROCs, memory loads, and science timelines) that come to the FSSC from the GIOC and LISOC. In operation, this branch acts exactly like the FileData branch but contains one additional step at the beginning of the branch before the verify step. This step, which uses the priority.pl script, checks the PRIORITY keyword in the associated message file. In the rare case, that the command is marked as ‘HIGH’, the command file and associated message file are immediately forwarded on to the MOC before any other processing occurs.

This branch makes use of the archive.pl, priority,pl, verify.pl, extract.pl, and cleanup.pl scripts. Command files from the various ground system elements are archived in a location where the TAKO scheduler can access them (e.g., $GSSCOPS/ops/commands). This location is configurable by changing the ingest_files.xml file and gssc_main.config (see Section 5.3). Figure 6 shows the general flow of data through this branch of the pipeline. Detailed flow diagrams for the various scripts are provided as figures accompanying the detailed script specifications provided in Section 6.

[image: image7.png]
Figure 5 - Flow chart for the main processing stages of the Command branch.

3.5 ProcessData Branch

This branch of the ingest system handles all data files that come to the FSSC which require post-processing (e.g., Level 1 LAT event data). In operation, this branch acts like the FileData branch but contains one additional step at the end of the branch after the extract step. This step, which uses the process.pl script, does post-processing on the file received to prepare it and ingest it into another database such as BROWSE or the LAT data server or add it to the web site.

This branch makes use of the archive.pl, verify.pl, extract.pl, process.pl, and cleanup.pl scripts. Figure 7 shows the general flow of data through this branch of the pipeline. Detailed flow diagrams for the various scripts are provided as figures accompanying the detailed script specifications provided in Section 6.

Figure 6 - Flow chart for the main processing stages of the ProcessData branch.

3.6 Lev0Data Branch

This branch of the ingest system handles all Level0 (L0) files that are transferred to the FSSC from the MOC. In operation, this branch acts like the FileData branch but contains one additional step at the end of the branch after the extract step. This step, which uses the process.pl script, runs the L0 redactor provided by the LISOC on the files and sends the redacted file to the LISOC. The redactor strips all ITAR controlled information from the L0 files, which the LISOC cannot handle due to Stanford policy. The L0 files were separated from other files that require post-processing since early versions of the redactor were slow and could delay the processing of other files.

This branch makes use of the archive.pl, verify.pl, extract.pl, process.pl, and cleanup.pl scripts. Figure 7 shows the general flow of data through this branch of the pipeline. Detailed flow diagrams for the various scripts are provided as figures accompanying the detailed script specifications provided in Section 6.

[image: image9.png]
Figure 7 - Flow chart for the main processing stages of the Lev0Data branch.
4 Database Tables

The database used by the Ingest System is called IngestData and is located on the main FSSC MySQL database server currently hosted on glastdb, although both the database name and server are configurable. The database tables can be broken up into four categories: logging tables, tracking tables, metadata tables, and external tables. The logging tables (ReceiveLog, FileLog, and ErrorLog) hold information, such as origins, locations, and problems, about the files in the system. The tracking tables note the start and stop times of the processing steps as the files go through the system. Metadata tables record specific information about each file that can be used to search for or retrieve specific sets of files. External tables are filled in and maintained outside the Ingest System but are accessed by it (e.g., the list of valid PROC execution requests)

The sections below describe the logging and tracking tables and define the information contained in each column of the tables. The metadata tables are described in Section 6.9.4 where the metadata extraction step is described.

When a date is specified in the tables below, the format is “YYYY-MM-DD”. When a timestamp is specified, the format is “YYYY-MM-DD HH:MM:SS”. When filling in a current time (e.g., the time a file was received or sent), the local time at the FSSC is used. Other times, which are taken from the name or contents of a data file (e.g., the starting time of validity), are UTC.

4.1 Logging Tables

4.1.1 ReceiveLog

This table is filled in by the post transfer command executed by FASTCopy. It logs all the information about the file transfer necessary to identify when the transfer occurred and from where.

The columns in the ReceiveLog table are:

	ID
	Unique auto-incrementing identification for each transfer received by the system.

	Date
	Timestamp indicating when the file was received by the FSSC.

	Source
	Mnemonic indicating from which ground system element the transfer came (MOC, LISOC, or GIOC).

4.1.2 FileLog

This table records all the relevant information about files that are processed, such as name, current location, and checksum. Each file is given a unique ID that is used to reference it by the other database tables in the system. Entries in this table are created by the post transfer script for tar files received from other mission elements and by the identify script for the contents of a tar file.

The Retransmission column is set to true by the retransmission tool when retransmission of a file must be requested (e.g., because it was lost or corrupted). When the retransmission is received, this column is set back to false by the identify script. See also Section 4.2.1.

The columns in the FileLog table are:

	ID
	Unique identification for each file received by the system. The database server automatically creates this for each file when the entry is made.

	Name
	Name of the file.

	Location
	Path to the location of the data file (without the trailing slash).

	Checksum
	MD5 checksum of the file.

	Size
	Size of the file in bytes.

	DateReceived
	Timestamp indicating when the file was entered into the table.

	ReceiveLog
	ID from the ReceiveLog table that corresponds for the file. This column is only filled in for file transferred to the FSSC not for files extracted from them.

	SourceFile
	ID value of the FileLog entry for the tar file for extracted files. This column is left blanks for the tar files transferred to the FSSC.

	Version
	Version number of the file, extracted from the filename. This column is left blank for files without version numbers.

	Retransmission
	Boolean value to indicate whether the file has been requested for retransmission. Set to “1” if a retransmission has been requested. Reset after the retransmitted file is received.

4.1.3 ErrorLog

This table is a general error logging table that is filled in by all the pipeline scripts whenever an error occurs in the system. This table provides a log of all errors encountered and tracks whether they have been resolved.

The columns in the ErrorLog table are:

	ID
	Internal error identification number. This number is automatically created by the database system when an error is entered.

	File
	FileLog table ID of the file that was being processed when the error occurred.

	Date
	Timestamp indicating when the error occurred.

	ErrorCode
	Error code generated by the script describing the type of error that occurred (See Table 31).

	Script
	Script that was executing when the error occurred.

	OPUSPath
	Branch of the ingest system where the error occurred.

	ErrorMsg
	Full text error message of the error describing exactly what happened.

	Status
	Set to OPEN when an error is entered. Should be changed to CLOSED when the error is fixed.

	Comment
	Describes how or why the error was fixed or status changed (e.g., see Issue Tracker # XX).

4.2 Tracking Tables

4.2.1 RetransmissionTracker

This table is used to track the status of files for which the FSSC has requested a retransmission (e.g., because they were lost or corrupted). The retransmission request tool, which sends the request, creates an entry in this table for each file that needs to be resent. It fills in the File column with the ID value for the file from the FileLog, RequestDate with the time the request was sent, Source with the source of the file (to whom the request was sent), and Comment with the reason the request was made. The identify script will fill in the DateReceived field when the retransmitted file has been received.

The columns in the RetransmissionTracker table are:

	ID
	Unique identifier for this processing entry generated by the database system.

	File
	FileLog ID number of the file that was processed

	RequestDate
	Timestamp indicating the time the retransmission request for the file was sent.

	Source
	The source of the file (MOC, LISOC, or GIOC).

	DateReceived
	Timestamp indicating the time the retransmission was received for the file.

	Comment
	The reason the retransmission request was sent.

4.2.2 IngestTracker

This table tracks the progress of files received by the FSSC through the General Ingest Branch (i.e., the tar files).
 An entry in this table is created by the post transfer command executed by FASTCopy. It fills in the File column with the ID value for the file from the FileLog. Each processing script then fills in the appropriate column as it starts and ends its step.

The columns in the IngestTracker table are:

	ID
	Unique identifier for this processing entry generated by the database system.

	File
	FileLog ID number of the file that was processed

	BackupStart
	Timestamp indicating the start of processing by the backup.pl script.

	BackupStop
	Timestamp indicating the end of successful processing by the backup.pl script.

	ToStagingStart
	Timestamp indicating the start of processing by the staging.pl script.

	ToStagingStop
	Timestamp indicating the end of successful processing by the staging.pl script.

	UnpackStart
	Timestamp indicating the start of processing by the unpack.pl script.

	UnpackStop
	Timestamp indicating the end of successful processing by the unpack.pl script.

	IdentifyStart
	Timestamp indicating the start of processing by the identify.pl script.

	IdentifyStop
	Timestamp indicating the end of successful processing by the identify.pl script.

	CleanupStart
	Timestamp indicating the start of processing by the cleanup.pl script.

	DateComplete
	Timestamp indicating when the processing was completed for this file. The cleanup.pl script fills this in when all processing is done for the file.

4.2.3 FileDataTracker

This table tracks the progress of files through the FileData Branch. The identify.pl script creates an entry in this table and then fills in the File column with the ID value for the file from the FileLog. Each processing script then fills in the appropriate column as it starts and ends its step.

The columns in the FileDataTracker table are:

	ID
	Unique identifier for this processing entry generated by the database system.

	File
	FileLog ID number of the file that was processed

	ArchiveStart
	Timestamp indicating the start of processing by the archive.pl script.

	ArchiveStop
	Timestamp indicating the end of successful processing by the archive.pl script.

	VerifyStart
	Timestamp indicating the start of processing by the verify.pl script.

	VerifyStop
	Timestamp indicating the end of successful processing by the verify.pl script.

	ExtractMDStart
	Timestamp indicating the start of processing by the extract.pl script.

	ExtractMDStop
	Timestamp indicating the end of successful processing by the extract.pl script.

	CleanupStart
	Timestamp indicating the start of processing by the cleanup.pl script.

	DateComplete
	Timestamp indicating when the processing was completed for this file. The cleanup.pl script fills this in when all processing is done for the file.

4.2.4 CommandTracker

This table tracks the progress of memory loads, PROC execution requests, and science timelines through the Command Branch. It is similar to the FileData tracker tables but contains additional columns to record processing by the priority.pl script. The identify.pl script creates an entry in this table and then fills in the File column with the ID value for the file from the FileLog. Each processing script then fills in the appropriate column as it starts and ends its step.

The columns in the CommandTracker table are:

	ID
	Unique identifier for this processing entry generated by the database system.

	File
	FileLog ID number of the file that was processed.

	ArchiveStart
	Timestamp indicating the start of processing by the archive.pl script.

	ArchiveStop
	Timestamp indicating the end of successful processing by the archive.pl script.

	PriorityCheckStart
	Timestamp indicating the start of processing by the priority.pl script.

	PriorityCheckStop
	Timestamp indicating the end of successful processing by the priority.pl script.

	VerifyStart
	Timestamp indicating the start of processing by the verify.pl script.

	VerifyStop
	Timestamp indicating the end of successful processing by the verify.pl script.

	ExtractMDStart
	Timestamp indicating the start of processing by the extract.pl script.

	ExtractMDStop
	Timestamp indicating the end of successful processing by the extract.pl script.

	CleanupStart
	Timestamp indicating the start of processing by the cleanup.pl script.

	DateComplete
	Timestamp indicating when the processing was completed for this file. The cleanup.pl script fills this in when all processing is done for the file.

4.2.5 ProcessDataTracker

This table tracks the progress of files through the ProcessData Branch. The identify.pl script creates an entry in this table and then fills in the File column with the ID value for the file from the FileLog. Each processing script then fills in the appropriate column as it starts and ends its step.

The columns in the ProcessDataTracker table are:

	ID
	Unique identifier for this processing entry generated by the database system.

	File
	FileLog ID number of the file that was processed.

	ArchiveStart
	Timestamp indicating the start of processing by the archive.pl script.

	ArchiveStop
	Timestamp indicating the end of successful processing by the archive.pl script.

	VerifyStart
	Timestamp indicating the start of processing by the verify.pl script.

	VerifyStop
	Timestamp indicating the end of successful processing by the verify.pl script.

	ExtractMDStart
	Timestamp indicating the start of processing by the extract.pl script.

	ExtractMDStop
	Timestamp indicating the end of successful processing by the extract.pl script.

	ProcessStart
	Timestamp indicating the start of processing by the process.pl script.

	ProcessStop
	Timestamp indicating the end of successful processing by the process.pl script

	CleanupStart
	Timestamp indicating the start of processing by the cleanup.pl script.

	DateComplete
	Timestamp indicating when the processing was completed for this file. The cleanup.pl script fills this in when all processing is done for the file.

4.2.6 Lev0DataTracker

This table tracks the progress of files through the Lev0Data Branch. The identify.pl script creates an entry in this table and then fills in the File column with the ID value for the file from the FileLog. Each processing script then fills in the appropriate column as it starts and ends its step.

The columns in the Lev0DataTracker table are:

	ID
	Unique identifier for this processing entry generated by the database system.

	File
	FileLog ID number of the file that was processed.

	ArchiveStart
	Timestamp indicating the start of processing by the archive.pl script.

	ArchiveStop
	Timestamp indicating the end of successful processing by the archive.pl script.

	VerifyStart
	Timestamp indicating the start of processing by the verify.pl script.

	VerifyStop
	Timestamp indicating the end of successful processing by the verify.pl script.

	ExtractMDStart
	Timestamp indicating the start of processing by the extract.pl script.

	ExtractMDStop
	Timestamp indicating the end of successful processing by the extract.pl script.

	ProcessStart
	Timestamp indicating the start of processing by the process.pl script.

	ProcessStop
	Timestamp indicating the end of successful processing by the process.pl script

	CleanupStart
	Timestamp indicating the start of processing by the cleanup.pl script.

	DateComplete
	Timestamp indicating when the processing was completed for this file. The cleanup.pl script fills this in when all processing is done for the file.

4.3 External Tables

The tables in this section are used by the Ingest System but are not really a part of it.
4.3.1 LATCommands, GBMCommands, SCCommands, OpsCommands

These tables hold information that is used by the verify step in the CommandTracker branch to validate commands in science timelines. The data in these tables is extracted from the respective project databases (PDBs) for the LAT, GBM, Spacecraft, and Operations and from the MOC’s Mission Planning System (MPS) dictionary. See the Database Format Control Document for more information about the project database files. These tables are filled in by the Project Database Ingestor Tool.
The columns in the LATCommands, GBMCommands, SCCommands, and OpsCommands tables are:

	ID
	Unique identifier for this processing entry generated by the database system.

	File
	FileLog ID number of the file that was processed.

	Type
	Three letter tag describing the contents of the record (e.g., CMD is a command mnemonic definition, FLD is a command field definition).

	Mnemonic
	Command mnemonic.

	Description
	Description of command.

4.3.2 LATProcs, GBMProcs, SCProcs, OpsProcs

The tables hold the list of valid PROCs used to validate the PROC execution requests. The data in these tables is provided to the FSSC by the MOC with updates as needed.

The columns in the LATProcs, GBMProcs, SCProcs, and OpsProcs tables are:
	
	

	
	

	Name
	Name of the PROC.

	Description
	Description of the PROC.

ToOTracker
This table is used to track the status of ToO. The ToO Order Tool (Op 120) creates initial entry in the table. The Ingest System fills in the Ack_ and Exec_ columns when the MOC sends an acknowledgement that they have received the ToO order and an execution notification when it has been uploaded to the spacecraft. See Section 6.9.4.3 for details.
The columns in the ToOTracker are:
	ID
	Auto-incrementing identifier number for this entry.

	File_Name
	Name of the ToO order file.

	Request_ID
	ID of the ToO request from the ToORequest table.

	Description
	Description file from the ToO order file name.

	Date_Sent
	Timestamp indicating when the ToO order was sent

	Ack_ID
	FileLog ID number of the acknowledgement file.

	Ack_Date
	Timestamp indicating when the acknowledgment file arrived.

	Ack_Status
	Status of the acknowledgment taken from the COM_ORIG keyword.

	Exec_ID
	FileLog ID number of the execution notification file.

	Exec_Date
	Timestamp indicating when the execution notification file arrived.

	Exec_Status
	Status of the execution notification taken from the COM_ORIG keyword.

	Superseded
	Whether the ToO order file has been superseded by another file.

5 Operating Environment

This section describes the various implementation details related to the operating environment in which the Ingest System runs, such as environment variables and the directory structure, which are necessary for it to function. Many of these are configurable through the configuration files specified below.

5.1 OPUS Configuration

Several modifications have been made to the standard OPUS configuration for use at the FSSC.

The default size of the OSF_DATA_ID entry has been changed from four to five and the default size of the base filename for path files has been changed from nine to fifteen characters.

Most errors cause an “e” to be displayed in the OSF entry and OMG, but several other values have been defined in specific cases. The full list of status values is given in Table 1.

Table 1 - OPUS status codes

	Code
	Description

	w
	Waiting for the process

	p
	Processing data

	c
	Successful completion

	e
	Unsuccessful completion

	d
	Database error

	f
	Disk full

	s
	Setup or environment error

	x
	Unexpected failure or exit code

	i
	Incomplete

5.2 Environment Variables

Various environment variables set by OPUS are available to the scripts. Some of these variables are defined by the OPUS system and others are defined in the individual resource files for the various processing steps. See Table 2.
The Ingest scripts use OSF_DATASET to get the name of the data file to be processed, PATH_FILE_NAME to know which pipeline is being run, and OSF_DATA_ID to know what type of data is being processed (during data specific pipelines). The value of OSF_DATA_ID corresponds to the Fermi data type given in ingest_files.xml.
Table 2 - OPUS Environment Variables

	Environment Variable
	Description

	OSF_DATASET
	Name of the exposure that triggered the task.

	OSF_DATA_ID
	Type of the exposure, a 5-character identifier.

	OSF_DCF_NUM
	Arbitrary sequence number.

	OSF_START_TIME
	Time the file started in the pipeline.

	OSF_EVENT
	OSF trigger name from the resource file. In our use of OPUS this is the file name.

	PATH_FILE_NAME
	Name of the .path file associated with this branch of the pipeline.

Several other environment variables that must be set by the operation system are required for the Ingest System to function. These are listed in Table 3. GSSCOPS, GSSCHOME, GSSC_MYSQL_PORT, CONFIGDIR are part of by the FSSC Standard Operating Environment. LOOKUP and CONFIGFILE must be defined for the Ingest System.

Table 3 - Environment variables used by Ingest System
	Environment Variable
	Definition

	GSSCOPS
	Root of operational data directories.

	GSSCHOME
	Root of FSSC software and configuration files.

	GSSC_MYSQL_PORT
	Database access port to use (3317 for development, 3306 for testing, and 3307 for production databases).

	CONFIGDIR
	Location of FSSC configuration files (e.g., ingest_files.xml)

	CONFIGFILE
	File name of the main FSSC configuration file (currently called gssc_main.config).

	USER
	Standard unix environment variable holding the user name. This is used as the database user name.

	LOOKUP
	Location of the encrypted password file for the database.

5.3 Configuration Files

The Ingest System uses several configuration files which can be used to modify the behavior of the system or which are used by the system to obtain necessary information.

5.3.1 Main FSSC Configuration File

All scripts use a configuration file, called gssc_main.config, which provides a centralized location for machine names, directory locations, database table names, and other parameters. The format of the file is one parameter/value pair per line. Environment variables can be used in the file, but they must start with a dollar sign and be enclosed in curly braces. The parameters, their current values, and definitions are defined Table 4.

Table 4 – Parameters and descriptions from the main GSSC configuration file used by Ingest.
	Parameter
	Current Value
	Description

	ingest_incoming_dir
	${GSSCOPS}/OPUS/data/indir
	Location where incoming files are placed by post transfer command.

	ingest_backup_dir
	${GSSCOPS}/OPUS/data/backup
	Location of backup area where files are saved before processing.

	ingest_staging_dir
	${GSSCOPS}/OPUS/data/staging
	Location of staging area where incoming files are unpacked.

	fastcopy_incoming_dir
	/glast02/users/gsscops/FASTCopy/inbox
	Location of the FASTCopy directory.

	
	
	

	opus_server
	gladriel.gsfc.nasa.gov
	Name of machine running OPUS.

	database_server
	glastdb.gsfc.nasa.gov
	Name of database server to use.

	database_port
	$GSSC_MYSQL_PORT
	Database port number to use.

	IngestData
	IngestData
	Name of database containing Ingest tables.

	database_user
	$USER
	Database user name.

	database_password
	${LOOKUP}/pass
	Database password file.

	IngestData_ReceiveLog
	ReceiveLog
	Name of received file log.

	IngestData_FileLog
	FileLog
	Name of central file log database table.

	IngestData_Tracker
	IngestTracker
	Name of tracking table for the general ingest branch.

	IngestData_ErrorLog
	ErrorLog
	Name of database table to hold errors.

	IngestData_RetranTacker
	RetransmissionTracker
	Name of database table to track retransmission requests.

	IngestData_ToOTracker
	ToOTracker
	Name of database table to track ToO Orders sent by the FSSC.

	IngestData_LPDB_Commands
	LATCommands
	Name of database table containing LAT commands from the project database.

	IngestData_GPDB_Commands
	GBMCommands
	Name of database table containing GBM commands from the project database.

	IngestData_MPDB_Commands
	SCCommands
	Name of database table containing spacecraft commands from the project database.

	IngestData_OPDB_Commands
	OpsCommands
	Name of database table containing Ops commands from the project database.

	IngestData_LPDB_Procs
	LATProcs
	Name of database table containing LAT PROC names.

	IngestData_GPDB_Procs
	GBMProcs
	Name of database table containing GBM PROC names.

	IngestData_MPDB_Procs
	SCProcs
	Name of database table containing spacecraft PROC names.

	IngestData_OPDB_Procs
	OpsProcs
	Name of database table containing Ops PROC names.

	ingest_tdat_directory
	${GSSCOPS}/glast/data/tdata
	Where new TDAT files are placed.

	ingest_filedata_dir
	${GSSCOPS}/OPUS/data/FileData
	Processing directory for FileData branch.

	ingest_processdata_dir
	${GSSCOPS}/OPUS/data/ProcessData
	Processing directory for ProcessData branch

	ingest_commanddata_dir
	${GSSCOPS}/OPUS/data/CommandData
	Processing directory for CommandData branch

	ingest_lev0data_dir
	${GSSCOPS}/OPUS/data/Lev0Data
	Processing directory for Lev0Data branch

	ops_backup_server
	gloss.gsfc.nasa.gov
	Name of backup operations computer.

	backup_archive_dir
	
	Base path (e.g., $GSSCOPS) on backup computer.

	ingest_main
	ingest_main.config
	Main ingest configuration file (see next section)

	ingest_file_formats
	ingest_files.xml
	Defines formats and action for data products (see below).

	ingest_tdat_headers
	ingest_tddat_headers.config
	Holds the file headers for the TDAT files sent to the HEASARC

	lev0_dbx_file
	ingest_redact.dbx
	File used by the L0 redactor to filter out ITAR controlled information.

	
	
	

	
	
	

The various archive directories for products are also stored in the main configuration file and referred to by the parameter names in the ingest_files.xml file.

5.3.2 Main Ingest Configuration File

Parameters specific to the ingest system (other than machine names and database table names) are stored in the ingest_main.config file. It has the same format and conventions as the FSSC configuration file. The file is found using the ingest_main parameter in the FSSC configuration file. The parameters, the values, and descriptions in this file are given in Table 5.
Table 5 - Parameters names and descriptions for main ingest configuration file.

	Parameter
	Current Value
	Description

	lev0_filter_program
	
	Full path file name of L0 redactor application

	burst_max_wait
	14400
	Maximum time to wait (in seconds) for all files of a GBM trigger or burst data package to arrive.

	lev0_max_wait
	18000
	Maximum time to wait (in seconds) for the L0 redactor to process an L0 file.

	paging_system_id
	INGEST
	Identification of the ingest system when the pager is called.

	paging_subid_planning
	PLANNING
	Group to receive planning related pages.

	paging_subid_database
	DATABASE
	Group to receive data error pages.

	paging_subid_error
	ERROR
	Group to receive general error pages.

	paging_subid_ingest
	INGEST
	Group to receive general ingest pages.

	send_page
	yes
	Either ‘yes’ or ‘no’. Whether to send a page when an error occurs. May be turned off for testing.

	ops_backup_copy
	yes
	Either ‘yes’ or ‘no’. Whether to copy a file to the operations backup computer. May be turned off for testing.

	send_to
	
	Space separated list of email addresses to send other alerts to.

	send_from
	
	Email address to send from.

	smtp_server
	
	SMTP server to use to send email.

	process_photons
	yes
	Either ‘yes’ or ‘no’. Whether to run the LAT photon ingest program.

	process_events
	yes
	Either ‘yes’ or ‘no’. Whether to run the LAT event ingest program.

	process_history
	yes
	Either ‘yes’ or ‘no’. Whether to run the LAT spacecraft history ingest program.

	process_ltcubes
	yes
	Either ‘yes’ or ‘no’. Whether to run the LAT livetime cube ingest program.

	photon_ingest_program
	
	Name of program to ingest photon files.

	event_ingest_program
	
	Name of program to ingest event files.

	history_ingest_program
	
	Name of program to ingest spacecraft history files.

	ltcube_ingest_program
	
	Name of program to ingest livetime cube files.

	copy_to_heasarc
	yes
	Either ‘yes’ or ‘no’. Whether copy science data products to the HEASARC FTP area.

	tolerance
	
	Tolerance for floating point number comparison tests.

File Information Configuration File
The second configuration file, ingest_files.xml, contains information telling the ingest system how to process different types of data products. For instance, it is used by identify.pl to determine the data type of a file and the appropriate branch to use to process it, by verify.pl to check that the files have a valid format, by archive.pl to know where to archive the file, and by extract.pl to parse information from the file name.
The file is formatted as an XML file but is human readable and writable with a minimum of trouble. The information in the file is laid out in a tree fashion. For example, each type of data is specified in a ‘file’ element. The ‘file’ element contains several other elements that describe the data file. The follow is the entry that describes Level 0 data files.

<file name="LEV0">

<category>ODP</category>

<format>binary</format>

<tracker>IngestData_ProcessDataTracker</tracker>

<metadata>IngestData_Lev0Metadata</metadata>

<opus>ProcessData</opus>

<processing_dir>ingest_processdata_dir</processing_dir>

<archive_dir>archive_lev0</archive_dir>

<description>Level 0 data</description>

<destination>TEST</destination>

<identify_move_file>yes</identify_move_file>

<identify_log_file>yes</identify_log_file>

<identify_track_file>yes</identify_track_file>

<identify_process_file>yes</identify_process_file>

<requires_message_file>no</requires_message_file>

<nameparts>

<mission order="1">(GLAST)</mission>

<year order="2">_(\d{4})</year>

<dayno order="3">(\d{3})</dayno>

<hour order="4">_(\d{2})</hour>

<minute order="5">(\d{2})</minute>

<second order="6">(\d{2})</second>

<vcid order="7">_VC(\d{2})</vcid>

<apid order="8">_(.+?)</apid>

<segment order="9">\.(\d+?)</segment>

<version order="10">\.(\d{2}) </version>

<extension order="11">.(gz)</extension>

</nameparts>

</file>
XML uses “elements” (such as <file> in the example above) and “attributes” (such as the ‘name’ in the file element) to describe data. For ASCII files, the definition may contain a section that gives regular expressions to match against the text lines in the file. For the science data products, the file contains a list of the required headers for the file (the primary header is treated as an extension called “Primary”). For each header, the required FITS keywords and their values are given. If a keyword does not have fixed value, then a regular expression match is given. REF _Ref103659298 \h
 Table 5 describes the elements and attributes used.

Table 5 - Description of the elements and attributes of file format configuration file.

	Element
	Description

	file
	Element used to block a section describing a type of file.

	name
	A four or five character identifier for the data type (e.g., LEV0 for Level 0 data) used in the ‘file’ element. The identify script sets the OSF_DATA_ID environment variable to this value.

	category
	The category of the product. Either ODP or SDP for operations or science data products.

	format
	The format of the file. Either binary, ASCII, or FITS.

	destination
	For SAA updates and commands, i.e., files that must or could be forwarded on, the destination. Accepted values are MOC, LISOC, or GIOC.

	group
	Indicates file that come a part of a package, e.g., GBM Burst Data or GBM Daily Data.

	tracker
	The name of the tracking database table (e.g., FileDataTracker).

	metadata
	The name of the metadata database table (e.g., Lev0Metadata).

	opus
	The OPUS pipeline branch name. The identify script sets PATH_FILE_NAME to this value.

	processing_dir
	The directory in which to process the file. Scripts in the data specific branches use this entry and the OSF_DATASET environment variable to locate the file to process. The parameter in this file refers to the parameter name used in the gssc_main.config file instead of listing the actual path.

	archive_dir
	The directory to which to copy the file for archiving. Used by the archive script. See Table 7 for a list of the current locations. The parameter in this file refers to the parameter name used in the gssc_main.config file instead of listing the actual path.

	description
	A comment describing the data (e.g., TDRSS Ephemeris).

	nameparts
	Contains elements that can be used to parse or identify a file name. The names of the elements are arbitrary since there are so many different types of files, but some, like ‘version’, are contained in all or nearly all. Each element contains the attribute ‘order’ to give the place of the field in the file name (starting at 1).

	file_format
	Defines the format of ASCII files. The ‘line’ element gives a regular expression match for the line number given in the ‘number’ attribute. A value of ‘default’ for ‘number’ means all lines not otherwise specified.

	header
	Defines the format of a FITS file header. The ‘name’ attribute indicates the name of the header (“Primary” for the primary header). Within ‘header’, the ‘name’ attribute of the ‘keyword’ element indicates the name of a required keyword. Within ‘keyword’, the ‘value’ element gives a required value (e.g., Fermi) while a ‘match’ element gives a regular expression to match against the value. Also within ‘keyword’, ‘optional’ means the keywords is optional and ‘repeating’ means the actual keyword is repeated (e.g., INFILE will actually be listed as INFILE01, INFILE02, etc.).

	optional_header
	Defined the headers which are not required. This tag can be repeated multiple times.

Environment variables can be used in the file, but they must start with a dollar sign and be enclosed in curly braces (e.g., ${GSSCOPS}).
5.3.3 TDAT Configuration File

The TDAT configuration file holds the headers for TDAT files that are to be transferred to the HEASARC to be incorporated into the Browse system. These headers describe the columns in the TDAT (units, etc.). The headers are stored as plain text in CDATA sections of an XML format file.
Table 6 - Elements of TDAT configuration file

	Element
	Description

	catalog
	Defines a block contain a TDAT header.

	filename
	Name of the TDAT file to create.

	catname
	Name of the catalog (as used by HEASARC).

	header
	Contains the plain text header (in a CDATA section).

5.4 Directory Structure

The following is an outline of the directory structure of the Ingest System and the Perl scripts and modules contained within. The scripts and modules of the Ingest system are installed as part of the standard operating environment of the FSSC under the directory defined by $GSSCHOME environment variable. Figure 7 show the directory structure for $GSSCHOME. The compiled executables and Perl scripts are located in $GSSCHOME/bin, and the Perl modules are placed in $GSSCHOME/lib/perl. Configuration files for these programs and scripts are in $CONFIGDIR (currently $GSSCHOME/config). The OPUS specific files, such as the OPUS path and resource files are in $GSSCHOME/OPUS/definitions. This directory also contains the opus_login.csh file that should be sourced by the gsscops account’s .tcshrc file in order for OPUS to set up its paths correctly

[image: image10.png]
Figure 8 - $GSSCHOME directory structure

All of the working directories for the Ingest system are located in the OPUS subdirectory of $GSSCOPS. Figure 8 shows the relevant directory structure under $GSSCOPS. The main blackboard for the Process Manager is $GSSCOPS/OPUS/home. The Observation Manager blackboards for the various pipelines are located in subdirectories of the $GSSCOPS/OPUS/obs directory and named for the OPUS path that they correspond to (i.e., Lev0, FileData, etc). The data processing directories are located in the $GSSCOPS/OPUS/data directory. The archive locations for the various data types can be anywhere, such as another disk, as defined in ingest_files.xml and Table 7.

[image: image12.png]
Figure 9 - $GSSCOPS directory structure

5.5 Archive Locations

Table 7 shows the directory locations for various Fermi file types. In the definitions below, “yyyy” is the four-digit year. GBM Daily and Burst Data products are stored in directories based on the date and burst number, respectively. For several products, “start date” is the starting date of the valid range of the products (e.g., 2008-07-05). If a directory does not exist, the achive.pl script will create it.
Table 7 - Archive Locations for Fermi Data Types

	Data Type
	Archive Location

	Level 0 Data
	$GSSCOPS/glast/data/lev0

	Integrated Observatory Timeline
	$GSSCOPS/ops/current/timelines/iotl

	
	

	ToO Notifications
	$GSSCOPS/ops/too/

	ToO Dispositions
	$GSSCOPS/ops/too/

	MOC Command Log
	$GSSCOPS/ops/current/moc/command_logs

	TDRSS Ephemeris
	$GSSCOPS/ops/current/ephemeris

	Fermi Ephemeris
	$GSSCOPS/ops/current/ephemeris

	As-Flown Timeline
	$GSSCOPS/ops/current/timelines/asflown

	Requested TDRSS Contact Schedule
	$GSSCOPS/ops/current/tdrss

	TDRSS Forecast Schedule
	$GSSCOPS/ops/current/tdrss

	LAT SAA Report
	$GSSCOPS/ops/current/predicts/saa

	GBM SAA Report
	$GSSCOPS/ops/current/predicts/saa

	Eclipse Entry and Exit Report
	$GSSCOPS/ops/current/predicts/eclipse

	Memory Loads
	$GSSCOPS/ops/current/commands/gbm (or /lat)

	PROC Execution Requests
	$GSSCOPS/ops/current/commands/gbm (or /lat)

	Science Timelines
	$GSSCOPS/ops/current/commands/gbm (or /lat)

	LAT SAA Definition Updates
	$GSSCOPS/ops/saa_definitions

	GBM SAA Definition Updates
	$GSSCOPS/ops/saa_definitions

	File Retransmission Requests
	$GSSCOPS/ops/retrans_requests

	GBM Daily Data
	$GSSCARCHIVE/glast/data/gbm/daily/yyyy/mm/dd

	GBM Trigger or Burst Data
	$GSSCARCHIVE/glast/data/gbm/triggers/yyyy/<burst number>

	GBM PHA Lookup Tables
	$GSSCARCHIVE/glast/calib_data/gbm/lut/<start date>

	GBM Calibration Files
	$GSSCARCHIVE/glast/calib_data/gbm/cal/<start date>

	GBM Burst Catalog
	$GSSCARCHIVE/glast/data/gbm/triggers/yyyy/<burst number>

	GBM Trigger Catalog
	$GSSCARCHIVE/glast/data/gbm/triggers/yyyy/<burst number>

	LAT Events (LS-001)
	$GSSCLEVEL0/glast/data/lat/evsum

	LAT Photons (LS-002)
	$GSSCLEVEL0/glast/data/lat/phsum

	
	

	
	

	LAT Pointing & Livetime (LS-005)
	$GSSCLEVEL0/glast/calib_data/lat/pt

	
	

	
	

	LAT Point Source Cat. (LS-008)
	$GSSCARCHIVE/glast/catalogs/lat/source

	LAT Burst Catalog (LS-009)
	$GSSCARCHIVE/glast/catalogs/lat/burst

	Interstellar Emission Model (LS-010)
	$GSSCARCHIVE/glast/calib_data/lat/iem

	LAT Energy Redistribution (LS-011)
	$GSSCARCHIVE/glast/calib_data/lat/edisp

	LAT Effective Area (LS-012)
	$GSSCARCHIVE/glast/calib_data/lat/earea

	LAT PSF (LS-013)
	$GSSCARCHIVE/glast/calib_data/lat/psf

6 Detailed Ingest Processing Script Descriptions

This section provides detailed descriptions of the functionality of the individual scripts that make up the processing pipeline. The input, effects, triggers, and a detailed description of the functioning of the script are given. Also listed are the possible errors output by the script, corresponding to those in the general list in Table 31.
6.1 Common Functionality

All the scripts share a common, centralized setup routine. This routine checks that the necessary environment variables are defined, that the directory structure is as expected, and that the necessary configuration and data files exist. It also initiates the database connection.

Since all the scripts have the same possible errors during the setup, we list them in Table 8 and list errors specific to a particular script in the individual descriptions below. The first two columns in Table 8 correspond to the error code and short description given in Table 312.2.2. The third column is the OPUS exit status (see Section). The last column lists the error message that is output.

The last two errors in Table 8, CANT_UPDATE_DB and CANT_DISCONNECT_DB, are actually not a part of the setup routine, but all scripts execute them when they finish and so have been included here.

In the table below, italics in the error message indicate something that is replaced by the script with an appropriate value (e.g., the name of the file). Some error codes may result in different error message depending on the circumstances of the error.

Table 8 - Common error conditions in all scripts
	Error Code
	Error
	OPUS code
	Error Message(s)

	10
	ENV_NOT_DEFINED
	s
	“Environment variable $env_var not defined.”

	30
	CANT_CONNECT_DB
	d
	“Can't connect to the database.”

	32
	DB_READ_ERROR
	d
	“Can't find file $dataset in file log.”

	11
	FILE_NOT_FOUND
	s
	“Can't find database password file.”

	
	
	
	“Can't find identifications file $idlist.”

	
	
	
	“Can't find file $read_file in $read_dir.”

	12
	NO_SUCH_DIR
	s
	“No such directory $directory.”

	
	
	
	"No such directory $dir_name defined in config file."

	14
	BAD_DIR_SPEC
	s
	“Do not have <read/write/execute> permission for $directory.”

	34
	CANT_UPDATE_DB
	d
	“Can't update table $tracker. No entry for $datafile.”

	31
	CANT_DISCONNECT_DB
	d
	“Can't disconnect from database.”

6.2 backup.pl

OPUS stage ID: BK (BacKup)
6.2.1 Input

1. OSF_DATASET environment variable.
2. Input directory where the file is located specified in the gssc_main.config file.

3. Location of backup directory where the file should be stored specified in the gssc_main.config file.

6.2.2 Effect

1. The BackupStart field is filled in the IngestTracker database table.

2. The file is copied from the input directory to the backup directory.

3. The BackupStop field is filled in the IngestTracker database table.

4. All errors are logged in the ErrorLog table.

5. If any of these steps fail, the appropriate error is raised and an appropriate OPUS status code (defined in Section 6.2.5) should occur in the OPUS system for the BK stage.

6. Successful completion of this script should result in a ‘c’ entry in the OPUS system for the BK stage and a ‘w’ entry in the MV stage.

6.2.3 Triggers

This step is triggered immediately by the creation of a valid OSF entry in OPUS with a ‘w’ in the BK stage. This OSF entry is made by the post transfer command executed by FASTCopy.

6.2.4 Description

This script is executed immediately upon receipt of a file to preserve a back-up copy of the original file in case the file is destroyed, lost, or corrupted in course of processing. A central file backup location stores all files while they are being processed. When the script starts, it updates the BackupStart field in the IngestTracker database table. It then copies the new file into the backup location before any other steps of the processing occur. Finally, it updates the BackupStop field in the IngestTracker database table to signify successful completion of this stage of processing. If any errors occur, they are reported and the script exits with the appropriate error code and does not update the BackupStop field.

6.2.5 Possible Errors

In the table below, italics in the error message indicate something that is replaced by the script with an appropriate value (e.g., the name of the file).

	Error

Code
	Error
	OPUS

Code
	Error Message(s)

	34
	CANT_UPDATE_DB
	d
	"Can't update Location column in $file_log."

	15
	CANT_COPY_FILE
	e
	“Can't copy: $from_dir/$datafile to $to_dir”

	23
	DISK_FULL
	f
	“Disk space checking failed.”

	71
	CHECKSUMS_DO_NOT_MATCH
	e
	“Checksum comparison failed.”

6.2.6 Flow Diagram

[image: image13.png]
Figure 10 - Flow diagram for the backup.pl script
6.3 staging.pl

OPUS stage ID: MV (MoVe to staging)

6.3.1 Input

1. OSF_DATASET environment variable.
1.
2. Input directory where the file is located specified in the gssc_main.config file.

3. Location of staging directory where the temporary directory to hold the file should be created specified in the gssc_main.config file.

6.3.2 Effect

1. The ToStagingStart field in the IngestTracker table is filled in.

2. The temporary directory created in the staging directory.

3. The file is moved into the temporary directory.

4. The ToStagingStop field in the IngestTracker table properly filled in.

5. All errors are logged in the ErrorLog table.

6. If any of these steps fail, the appropriate error is raised and an appropriate OPUS status code (defined in Section 6.3.5) should occur in the OPUS system for the MV stage.

7. Successful completion of this script should result in a ‘c’ entry in the OPUS system for the MV stage and a ‘w’ entry in the UP stage.

6.3.3 Triggers

This script is triggered by a ‘w’ entry in the OPUS system for the MV stage created by the successful complete of the backup.pl script.

6.3.4 Description

The script starts by updating the ToStagingStart entry for the specified file in the IngestTracker database table. This script creates a temporary directory in the specified staging area and moves the specified file into that directory. The directory name is created by appending “_dir” to the filename specified by the OSF_DATASET entry. Finally, it updates the ToStagingStop field to indicate successful completion of the script. If any errors occur, the appropriate error code is returned and the ToStagingStop database entry is not updated.

6.3.5 Possible Errors

In the table below, italics in the error message indicate something that is replaced by the script with an appropriate value (e.g., the name of the file).

	Error Code
	Error
	OPUS Code
	Error Message

	13
	CANT_CREATE_DIR
	e
	“Can't create directory $unpack_dir.”

	16
	CANT_MOVE_FILE
	e
	“Can't move $from_dir/$datafile to $unpack_dir.”

	23
	DISK_FULL
	f
	“Disk space checking failed.”

	71
	CHECKSUMS_DO_NOT_MATCH
	e
	“Checksum comparison failed.”

6.3.6 Flow Diagram

[image: image14.png]
Figure 11 - Flow diagram for the staging.pl script.
6.4 unpack.pl

OPUS stage ID: UP (UnPack)

6.4.1 Input

1. OSF_DATASET environment variable

2. Location of staging directory specified in the gssc_main.config file.

6.4.2 Effect

1. UnpackStart field is filled in the IngestTracker database table.

2. File is unpacked into working directory (a subdirectory of the staging directory)

3. UnpackStop field is filled in the IngestTracker database table.

4. All errors are logged in the ErrorLog table.

5. If any of these steps fail, the appropriate error is raised and an appropriate OPUS status code (defined in Section 6.4.5) should occur in the OPUS system for the UP stage.

6. Successful completion if this stage should result in a ‘c’ entry in the OPUS system for the UP stage and a ‘w’ entry in the PR stage

6.4.3 Triggers

This step it triggered by a ‘w’ entry in the OPUS system for the UP stage created by the successful complete of the staging.pl script.

6.4.4 Description

This script is executed immediately upon completion of the staging.pl script. When it starts, it updates the UnpackStart field in the entry for the specified file in the IngestTracker database table. The script determines the working directory by appending “_dir” to value of the OSF_DATASET variable and then appending this directory to the defined staging directory. The script unpacks the contents of the file. The file is expected to be a tar format file without any directory structure inside. Although gzip tar files are acceptable, other format will cause an error.

If the unpacking of the transfer file is successful, the UnpackStop field is updated in the database and exits with the appropriate exit code. If the unpacking of the transfer file fails, the UnpackStop field is not updated and the script exit with the appropriate error code.

6.4.5 Possible Errors

In the table below, italics in the error message indicate something that is replaced by the script with an appropriate value (e.g., the name of the file).

	Error

Code
	Error
	OPUS

 Code
	Error Message

	14
	BAD_DIR_SPEC
	e
	“Cannot change to $unpack_dir.”

	18
	CANT_EXEC_QUERY
	e
	“Cannot unpack $datafile.”

	23
	DISK_FULL
	f
	“Disk space checking failed.”

6.4.6 Flow Diagram

[image: image15.png]
Figure 12 - Flow diagram for the unpack.pl script.

6.5 identify.pl

OPUS stage ID: ID (IDentify)

6.5.1 Input

1. OSF_DATASET environment variable

2. Location of staging directory as provided in the gssc_main.config file.

3. Regular expressions, processing path name, and data type values for each data type from the ingest_files.xml.

6.5.2 Effect

1. IdentifyStart field is filled in the IngestTracker database table.

2. The transfer manifest is compared to files in directory to verify that all files sent arrived successfully and no extra files were sent.

3. For each file that is part of the transfer:

a. Determines the file data type based on regular expression matching in the ingest_files.xml file.

b. Verifies that message file has been transferred for data types, like commands, that require a message file.

c. Creates an entry in the File database table.

d. Creates an entry in the data specific tracking table.

e. Moves the file from working directory in staging area to the processing directory of the data specific pipeline branch.

f. Creates an OPUS OSF entry in the data specific pipeline branch for that file with the OSF_DATA_ID set to the data type mnemonic listed in ingest_files.xml.

4. IdentifyStop field is filled in the IngestTracker database table.

5. All errors are logged in the ErrorLog table.

6. If any of these steps fail, the appropriate error is raised and an appropriate OPUS status code (defined in Section 6.5.6) should occur in the OPUS system for the ID stage.

7. If the script completes successfully, a ‘c’ entry should occur in the OPUS system for the ID stage and the CU stage should have a ‘w’ entry.

6.5.3 Triggers

This script is triggered by a ‘w’ in the ID stage of the OPUS system indicating successful completion of the Unpack stage of the pipeline.

6.5.4 Description
The identify script is the workhorse of the general ingest branch and is responsible for identifying all the incoming data and moving it to the appropriate data specific pipeline. It also does some initial file verification and data checking relating to the contents of the data transfer. This script is started when the unpack script has successfully completed and begins by updating the IdentifyStart field in the IngestTracker database table. It changes to the working directory, which is found by appending the OSF_DATASET name to the staging directory path and then appending a “_dir” to the end. The contents of this directory are read into an array and then the contents are handled one by one to determine their data type.

For each file in the list, the data type is determined by matching the filenames against the filename patterns stored in ingest_files.xml and defined by the Operations and Science Data Product ICDs. If the data type is recognized, it is verified (see Section 6.5.5 below). If it passes verification, an entry is created for the file in the appropriate database. Once the file has been identified and the entry made in the database, the file is moved to the data specific processing directory and an OPUS OSF entry is created for the file in the appropriate processing pipeline branch. The OSF_DATA_ID will be set to the data type mnemonic listed in the configuration file.

If a file cannot be identified, it is flagged and processing moves on to the next file. After all files have been processed, the errors are reported and the script will exit with the appropriate error code. If all the errors are of the same type, then that error code is returned. If there are errors of different types, the multiple error code is returned. If the script successfully completes the identification and processing of all the files, the IdentifyStop field in the IngestTracker database is updated and the script exits with the success exit code.

If a manifest file is part of the package, the script reads the list of files contained in the manifest file and verifies that they are all part of the transferred package. It also verifies that all the MD5 checksums for the files match those given in the manifest file. For each file contained in the list but not found as part of the package, an error is raised. If no manifest file exists, the script reports an error. If a data file is found in the directory that is not in the manifest file, the script reports an error and processing continues.

For each data file, an entry is made in the FileLog database table and the Name, Location, Checksum, Size, and DateReceived fields are filled in with their respective values. The ReceiveLog entry is a key to the ReceiveLog table that is only used for the tar files and filled in by the FASTCopy post transfer command. The SourceFile field is filled in with the value of the FileLog ID of the tar file from which the data file was extracted. This filename is contained in the OSF_DATASET environment variable. If the file name of data file contains a version number, then this is placed in the Version column of FileLog. Otherwise, the Version column is left null. Message files for command files are not entered into the FileLog since they are simply transferred with the data file. If a file fails verification, it is still entered into the table so that a record exists that we have received it.

If an entry for a file already exists in FileLog, then the script checks if the Retransmission column is set to true which indicates a retransmission request for this file is pending. If no retransmission was requested, the script raises an error for this file. Otherwise, the FileLog entry for the file is then updated (e.g., the checksum, size, and date received are re-entered and the Retransmission column is set to false), the DateReceived column in RetransmissionTracker is set to the current time, the previous tracking and metadata table entries for the file are deleted (if they exist).

6.5.5 Data-type Specific Actions

The FileData branch handles nearly all the operations products (see the Operations Data Products ICD. The identify script fills in the File field in the FileDataTracker table with the ID value from the FileLog for the file being processed, moves the file to the FileData processing directory, and creates an OPUS entry for the file in FileData pipeline.
The following operations products use the ProcessData branch instead of the FileData branch.

· As-Flow Timelines
· Retransmission Requests
· SAA Definition Updates
Command file (PROC Request, Memory Load, or Science Timeline) are handled by the CommandData pipeline. If a command file is received, the script verifies that an accompanying message file exists. If it does not, an error is raised for that file (see Section 6.5.6). For all received commands, the script fills in the File field in the CommandTracker table with the ID value from the FileLog for the file being processed. The script then moves the command file and accompanying message file to the CommandData processing directory and creates an OPUS entry for the file in the Command pipeline. No entry is made for the message file.
The majority of the science data products (see the Science Data Products ICD) go through the FileData pipeline, with the exception of some calibration files that are treated as FileData (see below) and files that are used to trigger the create of a burst or daily data catalog dump. The script handles these the same as describe above for the operations products, except using the ProcessDataTracker, ProcessData directory, and ProcessData pipeline.
The following science data products use the ProcessData branch instead of the FileData branch.

· GBM Position and Attitude History File (GS-0006)
· GBM Trigger Catalog Entry (GS-105)

· GBM Burst Catalog Entry (GS-106)
· LAT Event File (LS-001)

· LAT Photon File (LS-002)

· LAT Pointing and Livetime History
· LAT Point Source Catalog
· LAT GRB Catalog
Level 0 files are handled by the Lev0Data branch, which is similar to the ProcessData branch, so that the L0 redactor tool can be run on the files, if necessary.

6.5.5.1

6.5.5.2

6.5.5.3
6.5.5.4

6.5.5.5

6.5.5.6

6.5.6 Possible Errors

In the table below, italics in the error message indicate something that is replaced by the script with an appropriate value (e.g., the name of the file).

	Error Code
	Error
	Opus Code
	Error Message

	14
	BAD_DIR_SPEC
	e
	“Cannot change to $unpack_dir.”

	32
	DB_READ_ERROR
	e
	“Can't read from $file_table.”

	
	
	
	“Can't get file id for $filename.”

	35
	ENTRY_EXISTS
	e
	"Another entry for $filename already exists in $file_table as $file_id.”

	
	
	
	“Entry $filename already exists in $file_table as $file_id and a retransmission was not requested.”

	34
	CANT_UPDATE_DB
	d
	“Can't update entry $file_id in $retran_tracker.”

	
	
	
	“Can't update entry $filename in $table.”

	33
	DB_WRITE_ERROR
	d
	“Can't create entry $filename in $table.”

	12
	NO_SUCH_DIR
	e
	"Processing directory $move_to does not exist."

	23
	DISK_FULL
	f
	“Disk space checking failed.”

	16
	CANT_MOVE_FILE
	e
	“Can't move: $fullname to $move_to.”

	71
	CHECKSUMS_DO_NOT_MATCH
	e
	“Checksum for $file does not match that store in file log.”

	
	
	
	Manifest file lists $checksum as checksum for $file but got $file_md5.”

	18
	CANT_EXEC_QUERY
	e
	“Failed to create OPUS pipeline entry.”

	
	
	
	“Can’t get checksum.”

	
	
	
	“Can’t get file size.”

	50
	NOT_YET_IMPLEMENTED
	e
	“Unknown file type $datatype for file $basename.”

“Don't know how to verify this type of file $basename.”

	4
	FAIL
	e
	“Could not verify the integrity of the transfer.”

	53
	NO_MESSAGE_FILE
	e
	“No message file for $datatype file $basename.”

	11
	FILE_NOT_FOUND
	e
	“Can't find $dataname corresponding to message file $basename.”

	1
	WARNING
	e
	“No files were found to process.”

	
	
	
	“No manifest file was present.”

	
	
	
	“More than one manifest file was present.”

	
	
	
	“$file is not listed in the manifest.”

	
	
	
	“File in manifest were not found.”

	2
	MULTIPLE_ERRORS
	e
	“There were multiple errors.”

6.5.7 Flow Diagram

[image: image16.png]
Figure 13 - Flow diagram for the identify.pl script.
6.6 cleanup.pl

OPUS stage ID: CU (CleanUp)
6.6.1 Input

1. OSF_DATASET environment variable

2. PATH_FILE_NAME environment variable

3. OSF_DATA_ID environment variable and location of the processing directory specified in the ingest_files.xml file if in a data specific processing pipeline.

4. Location of staging directory from gssc_main.config if in general processing pipeline.

6.6.2 Effect

1. The appropriate CleanupStart field in the database is filled in for the path the script is running in.

2. If operating in the General ingest path, the temporary directory created to process the tar file is removed along with all its contents.

3. If operating in any of the data specific processing paths, the file specified in OSF_DATASET and any ancillary files are removed.

4. The appropriate DateComplete field in the database is filled in.

5. All errors are logged in the ErrorLog table.

6. If any of these steps fail, the appropriate error is raised and an appropriate OPUS status code (defined in Section 6.6.5) should occur in the OPUS system for the CU stage.
6.6.3 Triggers

1. Successful completion of all steps of the processing path

2. No outstanding errors for that dataset.

6.6.4 Description

The cleanup script is the only script in common between the general and data specific branches. Using the path name, the script determines the appropriate action to take to handle the cleanup for branch being executed. In the general ingest branch, the script determines the exact directory it is to remove by appending '_dir' to the dataset name. This directory and any contents within in it are deleted. In a data specific branch, it determines the appropriate processing directory and deletes the file and any associated message file from the directory. Once the file deletion is complete, the DateComplete field in the appropriate tracker database table is updated. If an error occurs updating the table, the script exits with an appropriate error, otherwise it exits successfully, i.e. error code 0.

6.6.5 Possible Errors

Error code 90 occurs only in the General Ingest Branch cleanup. Error codes 11 and 91 occur only in the data specific branch cleanup. Error code 12 could occur in either branch when the script attempts to locate the directory to remove or from which to remove the file.

In the table below, italics in the error message indicate something that is replaced by the script with an appropriate value (e.g., the name of the file).
	Error

Code
	Error
	OPUS

Code
	Error Message

	12
	NO_SUCH_DIR
	e
	“No such directory $directory.”

	90
	CANT_REMOVE_DIR
	e
	“Can't remove directory $directory.”

	11
	FILE_NOT_FOUND
	e
	“Can't find file $target.”

	91
	CANT_REMOVE_FILE
	e
	“Can't remove file $target.”

6.6.6 Flow Diagram

[image: image17.png]
Figure 14 - Flow diagram for the cleanup.pl script.
6.7 verify.pl

6.7.1
1.
2.
3.
4.
6.7.2
1.
2.
3.
4.
5.
6.
7.
6.7.3

6.7.4

6.7.5

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

6.7.6

6.8
OPUS stage ID: VR (VeRify)

6.8.1 Input

1. OSF_DATASET environment variable

2. OSF_DATA_ID environment variable

3. Location of the processing directory specified in the ingest_files.xml file for each data type.

6.8.2 Effect

1. The VerifyStart field is filled in the data specific tracker database.

2. The appropriate data-specific verification steps are performed based on the data type specified in the OSF_DATA_ID environment variable. The details of these verification steps are described below in the Descriptions section.

3. The VerifyStop field is filled in the data specific tracker database.

4. All errors are logged to the ErrorLog table.

5. If any of these steps fail, the appropriate error is raised and an appropriate OPUS status code (defined in Section 6.8.5) should occur in the OPUS system for the VR stage.

6. Upon successful complete of this step, a ‘c’ entry should occur in the VR stage of the OPUS system and a ‘w’ entry should occur in the AR stage.

6.8.3 Triggers

1. This script is triggered by a ‘w’ in the VR stage of the processing path in the OPUS system created by the successful completion of the archive.pl script.

6.8.4 Description

This script performs the complex task of verifying that the data received is intact and valid. It is called immediately after the archive step. It starts by updating the VerifyStart field in the appropriate tracker database table for the data type identified by the OSF_DATA_ID environment variable. It then performs the data specific processes necessary to verify that the data is good. The details of these processes for each data type are described below. Once the verification is complete, the VerifyStop field is updated in the tracker database for the data type. If any errors occur, they are logged, the appropriate error codes are returned and trapped by the OPUS system and the VerifyStop value is not update in the database table.

For all files, the script computes the MD5 checksum and compares it to the value stored in the database to verify the move from the staging directory to the processing directory occurred properly. For many type of the Operations products, this is the only verification step.

The sections below describe the verifications steps for different data types.

6.8.4.1 ToO Notifications and Acknowledgements

These files are FITS message files without any accompanying data file. The script verifies that the message file is a valid FITS file and that its internal checksum (stored in the CHECKSUM keyword) is valid. It then checks that the keywords RESPONSE and COM_ORIG are present in the file.

6.8.4.2 Ephemerides

The script verifies that the file format matches the format defined in the Operations Data Products File Format Document and that the start and stop times listed in the file match those given in the file name.

6.8.4.3 LAT and GBM South Atlantic Anomaly Report

The script verifies that the file format matches the format defined in the Operations Data Products File Format Document and that the start time listed in the file matches that given in the file name.

6.8.4.4 Eclipse Entry and Exit Reports

The script verifies that the file format matches the format defined in the Operations Data Products File Format Document and that the start time listed in the file matches that given in the file name.

6.8.4.5 LAT and GBM South Atlantic Anomaly Definition Updates

The script verifies that the file contains matching latitude and longitude values.

6.8.4.6 Memory Loads

The script first checks that the accompanying message file is a valid FITS file and that its internal checksum (stored in the CHECKSUM keyword) is valid. It then checks that the checksum for the data file in the message file (contained in the FILESUM keyword) matches the data file.

6.8.4.7 PROC Execution Requests

The script first checks that the accompanying message file is a valid FITS file and that its internal checksum (stored in the CHECKSUM keyword) is valid. It then checks that the checksum for the data file in the message file (contained in the FILESUM keyword) matches the data file. Finally, it checks that each PROC exists in the appropriate PROC lookup database (e.g., the LAT PROC must be in the LATProcs database table). If the PROC is not recognized or is from the wrong source, an error is raised and processing for that command file stops.
6.8.4.8 ATS Timelines

Each planning week, the IOCs send the FSSC files containing lists of commands to the instruments to be executed during the week. When an ATS timeline is received, the script first checks that the accompanying message file is a valid FITS file and that its internal checksum (stored in the CHECKSUM keyword) is valid. It then checks that the checksum for the data file in the message file (contained in the FILESUM keyword) matches the data file. Finally, it checks that each command exists in the appropriate project database (e.g., the LAT timeline contains only commands in the LATCommands database table). If commands are not recognized or are from the wrong source, an error is raised and processing for that command file stops.

6.8.4.9 Science Data Products

Unlike the many operations products, the science data products are all FITS files and must conform to OGIP standards for FITS files because many of them will be made publicly available through HEASARC’s Browse interface. Therefore, the script performs a number of checks that are the same for all science data files and then additional steps depending on the data type. The data type dependence steps are detailed in the sections below.

The steps that are the same for all files are:

1. Verify that the file conforms to the FITS Standard as specified in "Definition of the Current FITS Standard” (NOST 100-2.0). This is done using the FTOOL fverify that performs a large number of checks of the file, including verifying that the CHECKSUM and DATASUM keywords are correct. See the fverify documentation for a complete list of the tests it performs. To pass, the file must generate no errors or warnings.
2. Check that the names of extensions, columns in each extension, and keywords in each header match those specified in the Science Data Products Interface Control Document for a given data type. The file should not have missing or extra, undocumented columns, extensions, or keywords. The script read the format information from the ingest_files.xml configuration file (see Section 5.3.2).
3. Check that the values of standard header keywords are correct for every header that contains them. These are specified in Table 9. Keyword values that depend on the type of data will be listed in the data type specific sections below.
4. Verify that the times in the DATE-OBS and DATE-END keywords match the values given in the TSTART and TSTOP keywords for each header that contains those parameters.
If any errors are encountered the script will exit with a FITS_ERROR code.
Table 9 - Standard Keywords and Values

	Keyword
	Required Value

	TELESCOP
	GLAST

	INSTRUME
	LAT or GBM, as appropriate

	ORIGIN
	LISOC or GIOC, as appropriate

	FILENAME
	Actual name of the file on disk

	DETNAM
	Name of detector (GBM only) as given in the file name

	MJDREFI
	51910

	MJDREFF
	7.428703703703703D-4

	TIMESYS
	TT

	TIMEUNIT
	s

	EQUINOX
	J2000.0

	RADECSYS
	FK5

6.8.4.9.1 GS-001 and GS-002 (CTIME and CSPEC Daily Version)
For GBM GS-001 and GS-002 files, the following conditions are also tested:

1. The values of the keywords given in Table 10 match the required values.
2. In the EBOUNDS extension, the lower energy channel given in the E_MIN column for each row matches the upper bound given in the previous row.
3. The values in the START and STOP columns in the SPECTRUM extension are within the time range defined by TSTART and TSTOP.
4. The values in the GTI extension are in increasing order, do not overlap, and are within the time range defined by TSTART and STOP.
Table 10 - Required keywords and values for GS-001 and GS-002
	Extension
	Keyword
	Required Value

	Primary
	HDUCLAS1
	COUNT

	Primary
	FILETYPE
	PHAII

	Primary
	DATATYPE
	CTIME for GS-001
CSPEC for GS-002

	EBOUNDS
	CHANTYPE
	PHA

	EBOUNDS
	DETCHANS
	8 for GS-001

128 for GS-002

	EBOUNDS
	HDUCLAS1
	RESPONSE

	EBOUNDS
	HDUCLAS2
	EBOUNDS

	EBOUNDS
	TFIELDS
	3

	SPECTRUM
	CHANTYPE
	PHA

	SPECTRUM
	HDUCLAS1
	SPECTRUM

	SPECTRUM
	HDUCLAS2
	TOTAL

	SPECTRUM
	HDUCLAS3
	COUNT

	GTI
	HDUCLAS1
	GTI

6.8.4.9.2 GS-005 (GBM Gain and Energy Resolution History)
For the GS-005 files, the following conditions are also tested:
1. The values of the keywords given in Table 11 match the required values.
2. The date when the calibration data should first be used, given by CVSD0001 (the TT date) and CVST0001 (the TT time), is later than the time given by the TSTART keyword.
3. The values in the START and STOP columns in the GBM SPEC HIST extension are within the time range defined by TSTART and TSTOP.
Table 11 - Required keywords and values for GS-005
	Extension
	Keyword
	Required Value

	Primary
	FILETYPE
	GBM SPEC HIST

	Primary
	CCLS0001
	BCF

	Primary
	CTTP0001
	DATA

	Primary
	CCNM0001
	DET_GAIN

	GBM SPEC HIST
	DETCHAN
	128

	GBM SPEC HIST
	TFIELDS
	11

	GBM SPEC HIST
	CCLS0001
	BCF

	GBM SPEC HIST
	CTTP0001
	DATA

	GBM SPEC HIST
	CCNM0001
	DET_GAIN

GS-006 (Fermi Position and Attitude History)
For the GS-006 files, the following conditions are also tested:
1. The values of the keywords given in Table 12 match the required values.
2. The quaterions in the GLAST POS HIST extension are properly normalized.
Table 12 - Required keywords and values for GS-006
	Extension
	Keyword
	Required Value

	Primary
	FILETYPE
	GLAST POS HIST

	Primary
	DETNAM
	ALL

	GLAST POS HIST
	DETNAM
	ALL

GS-007 (GBM PHA Look-Up Tables)

For the GS-007 files, the following conditions are also tested:

1. The values of the keywords given in Table 13 match the required values.
2. The date when the calibration data should first be used, given by CVSD0001 (the TT date) and CVST0001 (the TT time), is later than the time given by the TSTART keyword.
Table 13 - Required keywords and values for GS-007

	Extension
	Keyword
	Required Value

	Primary
	FILETYPE
	GLAST PHA LUT

	Primary
	CCLS0001
	BCF

	Primary
	CTTP0001
	DATA

	Primary
	CCNM0001
	DET_BINS

	Primary
	CDES0001
	GBM PHA LUT

	GBM PHA LUT
	DATATYPE
	CTIME or CSPEC

	GBM PHA LUT
	CCLS0001
	Same as in primary header.

	GBM PHA LUT
	CTTP0001
	Same as in primary header.

	GBM PHA LUT
	CCNM0001
	Same as in primary header.

	GBM PHA LUT
	CDES0001
	Same as in primary header.

	GBM PHA LUT
	CVSD0001
	Same as in primary header.

	GBM PHA LUT
	CVST0001
	Same as in primary header.

	GBM PHA LUT
	TFIELDS
	2

GS-008 (GBM Calibration)

For the GS-008 files, the following conditions are also tested:

1. The values of the keywords given in Table 14 match the required values.

2. The date when the calibration data should first be used, given by CVSD0001 (the TT date) and CVST0001 (the TT time), is later than the time given by the DATE-OBS keyword.

3. The ZENITH and AZIMUTH match the zenith and azimuth angles listed in the file name and FILENAME keyword and fall within the ranges indicated in the CBD20001 and CBD30001 keywords.
Table 14 - Required keywords and values for GS-008

	Extension
	Keyword
	Required Value

	Primary
	FILETYPE
	GLAST PHA LUT

	Primary
	CCLS0001
	BCF

	Primary
	CTTP0001
	DATA

	Primary
	CCNM0001
	SPECRESP

	Primary
	CDES0001
	GBM DIRECT DRM ELEMENT

	DIRERESP
	CCLS0001
	Same as in primary header.

	DIRERESP
	CTTP0001
	Same as in primary header.

	DIRERESP
	CCNM0001
	Same as in primary header.

	DIRERESP
	CDES0001
	Same as in primary header.

	DIRERESP
	CVSD0001
	Same as in primary header.

	DIRERESP
	CVST0001
	Same as in primary header.

	DIRERESP
	TFIELDS
	2

	DIRERESP
	ZENITH
	Same as in primary header.

	DIRERESP
	AZIMUTH
	Same as in primary header.

6.8.4.9.3 GS-101 and GS-102 (CTIME and CSPEC Burst Version)

The GS-101 and GS-102 files have the same verification criteria as the GS-001 and GS-002 files with the following additional required keyword values:
Table 15 - Required keywords and values for GS-101 & GS-102
	Extension
	Keyword
	Required Value

	Primary
	RA_OBJ
	Number between 0-360

	Primary
	DEC_OBJ
	Number between -90 and 90

	Primary
	OBJECT
	‘GRB’ followed by same timestamp for the burst given in the BN number in the file name and FILENAME keyword.

	SPECTRUM
	RA_OBJ
	Same as in primary header.

	SPECTRUM
	DEC_OBJ
	Same as in primary header.

	SPECTRUM
	OBJECT
	Same as in primary header.

6.8.4.9.4 GS-103 (GBM TTE)
For the GS-103 files, the following conditions are also tested:

1. The values of the keywords given in Table 16 match the required values.
2. In the EBOUNDS extension, the lower energy channel given in the E_MIN column for each row matches the upper bound given in the previous row.

3. The value of the TRIGTIME keyword in the EBOUNDS and EVENTS extension is between the values of the TSTART and TSTOP keywords.
4. The values in the TIME column of the EVENTS extension are between the values of the TSTART and TSTOP keywords.
Table 16 - Required keywords and values for GS-103
	Extension
	Keyword
	Required Value

	Primary
	FILETYPE
	GBM PHOTON LIST

	Primary
	HDUCLAS1
	PHOTON

	Primary
	DATATYPE
	TTE

	EBOUNDS
	CHANTYPE
	PHA

	EBOUNDS
	DETCHANS
	128

	EBOUNDS
	HDUCLAS1
	RESPONSE

	EBOUNDS
	HDUCLAS2
	EBOUNDS

	EBOUNDS
	TFIELDS
	3

	Primary
	RA_OBJ
	Number between 0-360

	Primary
	DEC_OBJ
	Number between -90 and 90

	Primary
	OBJECT
	‘GRB’ followed by same timestamp for the burst given in the BN number in the file name and FILENAME keyword.

	EVENTS
	RA_OBJ
	Same as in primary header.

	EVENTS
	DEC_OBJ
	Same as in primary header.

	EVENTS
	TRIGTIME
	Same as in EBOUNDS header.

6.8.4.9.5 GS-104 (GBM DRMs)
Unlike most other products, the GS-104 does not have a fixed number of extensions. The file will have any number of SPECRESP MATRIX extensions depending on how many DRMs are in the file. However, the header of each extension should be substantially similar.
For the GS-104 files, the following conditions are also tested:
1. The values of the keywords given in Table 17 match the required values.

2. In the EBOUNDS extension, the lower energy channel given in the E_MIN column for each row matches the upper bound given in the previous row.

3. The value of the TRIGTIME keyword in the EBOUNDS and SPECRESP MATRIX extension is between the values of the TSTART and TSTOP keywords.
4. The RADECSYS, EQUINOX, RA_OBJ, DEC_OBJ, and OBJECT keywords have the same values in the Primary and SPECTRESP MATRIX headers.
Table 17 - Required keywords and values for GS-104
	Extension
	Keyword
	Required Value

	Primary
	FILETYPE
	GBM DRM

	Primary
	HDUCLAS1
	RSPII

	Primary
	DRM_TYPE
	CSPEC or CTIME

	Primary
	DRM_NUM
	The number of SPECRESP MATRIX extensions

	Primary
	RA_OBJ
	Number between 0-360

	Primary
	DEC_OBJ
	Number between -90 and 90

	Primary
	OBJECT
	‘GRB’ followed by same timestamp for the burst given in the BN number in the file name and FILENAME keyword.

	EBOUNDS
	CHANTYPE
	PHA

	EBOUNDS
	DETCHANS
	128

	EBOUNDS
	HDUCLAS1
	RESPONSE

	EBOUNDS
	HDUCLAS2
	EBOUNDS

	EBOUNDS
	TFIELDS
	3

	SPECRESP MATRIX
	CHANTYPE
	PHA

	SPECRESP MATRIX
	NUMEBINS
	250

	SPECRESP MATRIX
	DETCHANS
	128

	SPECRESP MATRIX
	HDUCLAS1
	RESPONSE

	SPECRESP MATRIX
	HDUCLAS2
	RSP_MATRIX

	SPECRESP MATRIX
	TFIELDS
	11

	PHT_EDGE
	CHANTYPE
	PHA

	PHT_EDGE
	NUMEBINS
	250

	PHT_EDGE
	TFIELDS
	3

GS-105 (Trigger Catalog Entry)
For the GS-105 files, the following conditions are also tested:
1. The values of the keywords given in Table 18 match the required values.

Table 18 - Required keywords and values for GS-105

	Extension
	Keyword
	Required Value

	Primary
	FILETYPE
	TRIGGER ENTRY

	Primary
	CLASS
	BURST, SOLAR FLARE, ASTRONOMICAL SOURCE, OR NOISE

	Primary
	RELIABLT
	Number between 0 and 1.

	Primary
	RA_OBJ
	Number between 0-360

	Primary
	DEC_OBJ
	Number between -90 and 90

	Primary
	OBJECT
	‘GRB’ followed by same timestamp for the burst given in the BN number in the file name and FILENAME keyword.

GS-106 (Preliminary Burst Catalog Entry)
For the GS-106 files, the following conditions are also tested:
1. The values of the keywords given in Table 19 match the required values.

2. The value of the TRIGTIME keyword in the DETECTOR DATA and FIT PARAMETERS extension is between the values of the TSTART and TSTOP keywords.

3. The RADECSYS, EQUINOX, RA_OBJ, DEC_OBJ, and OBJECT keywords have the same values in the Primary, DETECTOR DATA, and FIT PARAMETERS headers.

Table 19 - Required keywords and values for GS-106

	Extension
	Keyword
	Required Value

	Primary
	FILETYPE
	SPECTRAL FITS

	Primary
	CLASS
	BURST

	Primary
	RELIABLT
	Number between 0 and 1.

	Primary
	RA_OBJ
	Number between 0-360

	Primary
	DEC_OBJ
	Number between -90 and 90

	Primary
	OBJECT
	‘GRB’ followed by same timestamp for the burst given in the BN number in the file name and FILENAME keyword.

	DETECTOR DATA
	TFIELDS
	12

6.8.4.9.6 GS-107 (GBM TRIGDAT)
For the GS-107 files, the following conditions are also tested:
1. The values of the keywords given in Table 20 match the required values.

2. The value of the TRIGTIME keyword in all the headers is between the values of the TSTART and TSTOP keywords.
3. The RADECSYS, EQUINOX, RA_OBJ, DEC_OBJ, and OBJECT keywords have the same values in the all the headers.
Table 20 - Required keywords and values for GS-107
	Extension
	Keyword
	Required Value

	Primary
	FILETYPE
	TRIGDAT

	Primary
	RA_OBJ
	Number between 0-360

	Primary
	DEC_OBJ
	Number between -90 and 90

	Primary
	OBJECT
	‘GRB’ followed by same timestamp for the burst given in the BN number in the file name and FILENAME keyword.

GS-108 (GBM Background Files)
For the GS-108 files, the following conditions are also tested:
1. The values of the keywords given in Table 21 match the required values.

2. The RADECSYS, EQUINOX, RA_OBJ, DEC_OBJ, and OBJECT keywords have the same values in the headers.
3. In the EBOUNDS extension, the lower energy channel given in the E_MIN column for each row matches the upper bound given in the previous row.

Table 21 - Required keywords and values for GS-108
	Extension
	Keyword
	Required Value

	Primary
	FILETYPE
	GBM BACK

	Primary
	RA_OBJ
	Number between 0-360

	Primary
	DEC_OBJ
	Number between -90 and 90

	Primary
	OBJECT
	‘GRB’ followed by same timestamp for the burst given in the BN number in the file name and FILENAME keyword.

	SPECTRUM
	QUALITY
	0

	SPECTRUM
	HDUCLAS1
	SPECTRUM

	SPECTRUM
	HDUCLAS2
	BKG

	SPECTRUM
	HDUCLAS3
	RATE

	SPECTRUM
	HDUCLAS4
	PHA:I

	SPECTRUM
	CHANTYPE
	PHA

	SPECTRUM
	DETCHANS
	128

	EBOUNDS
	DETCHANS
	128

	EBOUNDS
	HDUCLAS1
	SPECTRUM

	EBOUNDS
	HDUCLAS2
	EBOUNDS

6.8.4.9.7 LS-001 (LAT Event Summary Data)

For LAT event summary data the following conditions are also tested:

1. The values of the keywords given in Table 22 match the required values.
2. The Time column (Mission Elapsed Time) in the EVENTS extension only contains values between TSTART and TSTOP.

3. The ONTIME keyword in the GTI extension header is the sum of the GTIs.

4. The TELAPSE keyword in the GTI extension header is the difference of the TSTOP and TSTART values.

Table 23 - Required keywords and values for LS-002
	Extension
	Keyword
	Required Value

	EVENTS
	HDUCLAS1
	EVENTS

	EVENTS
	HDUCLAS2
	ALL

	EVENTS
	TIMEREF
	LOCAL

	EVENTS
	TASSIGN
	SATELLITE

LS-002 (LAT Photon Summary Data)

For LAT photon summary data the following conditions are also tested:

5. The values of the keywords given in Table 22 match the required values.
6. The Time column (Mission Elapsed Time) in the EVENTS extension only contains values between TSTART and TSTOP.
7. The ONTIME keyword in the GTI extension header is the sum of the GTIs.

8. The TELAPSE keyword in the GTI extension header is the difference of the TSTOP and TSTART values.
Table 22 - Required keywords and values for LS-002
	Extension
	Keyword
	Required Value

	EVENTS
	HDUCLAS1
	EVENTS

	EVENTS
	HDUCLAS2
	ALL

	EVENTS
	TIMEREF
	LOCAL

	EVENTS
	TASSIGN
	SATELLITE

6.8.4.9.8 LS-005 (LAT Pointing and Livetime History)

For the LAT Pointing and Livetime History the following conditions are also tested:
1. The total of the Livetime and Deadtime columns in the LAT_POINTING_HIST extension equals the difference of the TSTOP and TSTART keywords.
2. The Start and Stop columns in the LAT_POINTING_HIST extension only contain values between TSTART and TSTOP.
Table 23 - Required keywords and values for LS-005

	Extension
	Keyword
	Required Value

	SC_DATA
	TFIELDS
	18

6.8.4.9.9 LS-008 (LAT Point Source Catalog)
For LAT Point Source Catalog file the following conditions are also tested:

1. The values of the keywords given in Table 25 match the required values.
Table 25 - Required keywords and values for LS-008
	Extension
	Keyword
	Required Value

	LAT_Point_Source_Catalog
	TFIELDS
	34

	LAT_Point_Source_Catalog
	HDUCLAS1
	SRCLIST

6.8.4.9.10 LS-009 (LAT Burst Catalog)
For LAT Burst Catalog file the following conditions are also tested:

1. The values of the keywords given in Table 26 match the required values.
Table 26 - Required keywords and values for LS-009
	Extension
	Keyword
	Required Value

	LAT_GRB _Catalog
	TFIELDS
	31

	LAT_GRB _Catalog
	HDUCLAS1
	SRCLIST

6.8.4.9.11 LS-010 (LAT Interstellar Emission Model)
For LAT Interstellar Emission Model the following conditions are also tested:

1. The values of the keywords given in Table 27 match the required values.
Table 27 - Required keywords and values for LS-010
	Extension
	Keyword
	Required Value

	LAT_IEM_INTENSITIES
	TFIELDS
	3

	LAT_IEM_PIXELS
	TFIELDS
	3

	LAT_IEM_ENERGIES
	TFIELDS
	1

6.8.4.9.12 LS-011 (LAT Energy Redistribution)
For LAT Energy Redistribution the following conditions are also tested:

1. The values of the keywords given in Table 28 match the required values.
2. The value of the LATCLASS and CVSD001 keywords match the class identifier and date given in the file name and FILENAME keyword.
Table 28 - Required keywords and values for LS-011
	Extension
	Keyword
	Required Value

	Primary
	HDUCLAS1
	RESPONSE

	Primary
	HDUCLAS2
	EDISP

	Primary
	LATCLASS
	Two letters. The first is any letter A-Z. The second is F or B.

	ENERGY REDISTRIBUTION
	LATCLASS
	Same as primary.

	ENERGY REDISTRIBUTION
	HDUCLAS1
	RESPONSE

	ENERGY REDISTRIBUTION
	HDUCLAS2
	EDISP

	ENERGY REDISTRIBUTION
	EARVERSN
	1992a

	ENERGY REDISTRIBUTION
	CSYSNAME
	XMA_POL

	ENERGY REDISTRIBUTION
	CCLS0001
	BCF

	ENERGY REDISTRIBUTION
	CDTP0001
	DATA

	ENERGY REDISTRIBUTION
	CCNM0001
	EDISP

	ENERGY REDISTRIBUTION
	CBD10001
	ENERG(xx-yy)MeV where xx and yy are numbers.

	ENERGY REDISTRIBUTION
	CBD20001
	THETA(0-90)deg

	ENERGY REDISTRIBUTION
	CBD30001
	PHI(0-360)deg

6.8.4.9.13 LS-012 (LAT Effective Area)
For LAT Effective Area the following conditions are also tested:

1. The values of the keywords given in Table 29 match the required values.
2. The value of the LATCLASS and CVSD001 keywords match the class identifier and date given in the file name and FILENAME keyword.
Table 29 - Required keywords and values for LS-012
	Extension
	Keyword
	Required Value

	Primary
	LATCLASS
	Two letters. The first is any letter A-Z. The second is F or B.

	EFFECTIVE AREA
	LATCLASS
	Same as primary.

	EFFECTIVE AREA
	HDUCLAS1
	RESPONSE

	EFFECTIVE AREA
	HDUCLAS2
	EFF_AREA

	EFFECTIVE AREA
	EARVERSN
	1992a

	EFFECTIVE AREA
	CSYSNAME
	XMA_POL

	EFFECTIVE AREA
	CCLS0001
	BCF

	EFFECTIVE AREA
	CDTP0001
	DATA

	EFFECTIVE AREA
	CCNM0001
	EFF_AREA

	EFFECTIVE AREA
	CBD10001
	ENERG(xx-yy)MeV where xx and yy are numbers.

	EFFECTIVE AREA
	CBD20001
	THETA(0-90)deg

	EFFECTIVE AREA
	CBD30001
	PHI(0-360)deg

LS-013 (LAT Point Spread Function)

For LAT Point Spread Function the following conditions are also tested:

1. The values of the keywords given in Table 30 match the required values.
2. The value of the LATCLASS and CVSD001 keywords match the class identifier and date given in the file name and FILENAME keyword.
Table 30 - Required keywords and values for LS-013
	Extension
	Keyword
	Required Value

	Primary
	LATCLASS
	Two letters. The first is any letter A-Z. The second is F or B.

	POINT SPREAD FUNCTION
	LATCLASS
	Same as primary.

	POINT SPREAD FUNCTION
	HDUCLAS1
	RESPONSE

	POINT SPREAD FUNCTION
	HDUCLAS2
	PSF

	POINT SPREAD FUNCTION
	EARVERSN
	1992a

	POINT SPREAD FUNCTION
	CSYSNAME
	XMA_POL

	POINT SPREAD FUNCTION
	CCLS0001
	BCF

	POINT SPREAD FUNCTION
	CDTP0001
	DATA

	POINT SPREAD FUNCTION
	CCNM0001
	PSF

	POINT SPREAD FUNCTION
	CBD10001
	ENERG(xx-yy)MeV where xx and yy are numbers.

	POINT SPREAD FUNCTION
	CBD20001
	THETA(0-90)deg

	POINT SPREAD FUNCTION
	CBD30001
	PHI(0-360)deg

	PSF_SCALING_PARAMS
	LATCLASS
	Same as primary.

	PSF_SCALING_PARAMS
	HDUCLAS1
	RESPONSE

	PSF_SCALING_PARAMS
	HDUCLAS2
	PSFPARAMS

	PSF_SCALING_PARAMS
	TFIELDS
	1

6.8.5 Possible Errors

In the table below, italics in the error message indicate something that is replaced by the script with an appropriate value (e.g., the name of the file).

	Error Code
	Error
	OPUS Code
	Error Message

	14
	BAD_DIR_SPEC
	e
	“Cannot change to $directory.”

	71
	CHECKSUMS_DO_NOT_MATCH
	e
	“Checksum in database and for file on disk do not match.”

	70
	FITS_ERROR
	e
	“Encounter FITS error processing $fitsfile.”

	52
	BAD_MESSAGE_FILE
	e
	“Message file failed checksum verification.”

	74
	BAD_FILE_FORMAT
	e
	“File format for $infile does not match that expected.”

	73
	BAD_DATE_RANGE
	e
	“<Start/stop> times contained in file and in file name do not match for $infile.”

	17
	CANT_OPEN_FILE
	e
	“Cannot open file $infile.”

	19
	WRONG_USAGE
	e
	“Expected database table is not defined in configuration file.”

	76
	COMMAND_NOT_FOUND
	e
	“Could not find $command in $pdb_table.”

6.8.6 Flow Diagram

[image: image19.png]
Figure 16 - Flow diagram for the verify.pl script.
6.9 archive.pl

OPUS stage ID: AR (ARchive)

6.9.1 Input

5. OSF_DATASET environment variable

6. OSF_DATA_ID environment variable

7. Location of the processing directory specified in the ingest_files.xml file for each data type.

8. Location of the archive directory specified in the ingest_files.xml file for each data type.

6.9.2 Effect

8. The ArchiveStart field is filled in the data specific tracker database.

9. The file is copied to the archive location as specified in ingest_files.xml.

10. The Location field in the FileLog table is filled with the full path to the file in the tracker database.

11. The ArchiveStop field is filled in the data specific tracker database.

12. All errors are logged to the ErrorLog table.

13. If any of these steps fail, the appropriate error is raised and an appropriate OPUS status code (defined in Section 6.6.5) should occur in the OPUS system for the AR stage.

14. Successful completion results in a ‘c’ value in the AR stage in the OPUS system and a ‘w’ value in the MD stage
6.9.3 Triggers

1. This step is triggered immediately by the creation of an OSF entry in the relevant data specific portion of the processing pipeline with a ‘w’ in the AR stage. This entry is created by the identify script.

6.9.4 Description

The script starts by updating the ArchiveStart field in the relevant tracker database table. The file is then moved to the archive and the Location field in the FileLog entry is filled in with the full path (excluding filename and trailing ‘/’) to the data. Finally, the ArchiveStop field is updated and the script exits. If there are errors, the appropriate error codes and messages are logged and the script exits with a non-zero exit code and the ArchiveStop field is not updated in the database.

The archive location is contained in the ingest_files.xml configuration file and is tied to the OSF_DATA_ID environment variable.

For GBM trigger/burst files, GBM daily files, PHA lookup tables, and GBM calibration files, the directory stored in the configuration file is only the base directory of the archive location. The script creates new directory by year, burst number, date, etc. (depending on the data type) as needed under the base directory location. See Table 7 for the details of the directory names for these types of files.

If a file type has the backup_to_ops parameter in ingest_files.xml set to ‘yes’ (e.g., ephemeris files), the script also copies the file to the operations backup computer. If there is an error during the copy, the script exits with a WARNING (exit status 1) but continues on the next step in the pipeline.
For some operations products (e.g., ATS files), the script also sends a page to the planning group (as defined by the Paging system) to alert them that a new file has been received. These files have a send_page_to parameter in ingest_files.xml. The value of the parameter is the group to page.
For some science data products, the script will make an additional copy of the file to the FTP area. It will also move previous version of a file to a separate directory.
6.9.5 Possible Errors

In the table below, italics in the error message indicate something that is replaced by the script with an appropriate value (e.g., the name of the file).

	Error Code
	Error
	OPUS Code
	Error Message

	1
	WARNING
	e
	Failed trying to copy the file to the operations backup computer.

	15
	CANT_COPY_FILE
	e
	“Can't copy: $from_dir/$datafile to $to_dir”

	23
	DISK_FULL
	f
	“Disk space checking failed.”

	71
	CHECKSUMS_DO_NOT_MATCH
	e
	“Checksum comparison failed.”

	34
	CANT_UPDATE_DB
	d
	“Can't update Location column in $file_log.”

6.9.6 Flow Diagram

[image: image20.png]
Figure 16 - Flow diagram for the acrhive.pl script.
6.10 extract.pl

OPUS stage ID: MD (extract MetaData)

6.10.1 Input

1. OSF_DATASET environment variable

2. OSF_DATA_ID environment variable

3. Location of the processing directory specified in the ingest_files.xml file for each data type.

6.10.2 Effect

1. The ExtractMDStart field is filled in the data specific tracker database.

2. The appropriate data-specific metadata values are extracted based on the data type specified in the OSF_DATA_ID environment variable. The details of this extraction are described below in the Descriptions section.

3. The ExtractMDStop field is filled in the data specific tracker database.

4. All errors are logged to the ErrorLog table.

5. If any of these steps fail, the appropriate error is raised and an appropriate OPUS status code (defined in Section 6.9.5) should occur in the OPUS system for the MD stage.

6. Upon successful complete of the script, a ‘c’ entry should occur in the MD stage of the OPUS system. A ‘w’ entry should be generated in the appropriate in the process stage for the ProcessData pipeline or the cleanup stage for all other pipelines.

6.10.3 Triggers

1. This script is triggered by a ‘w’ entry in the MD stage of the processing path in the OPUS system created by the successful completion of the verify.pl script.

6.10.4 Description

This script extracts and stores in the appropriate database tables all the metadata necessary to enable searching for data in the ingested files or needed by other tools. This data will be used either internally by the FSSC or as part of the information sent to BROWSE to allow users to query the data in the archive. The script starts by updating the ExtractMDStart field in the appropriate tracker database table. Then the data specific metadata is extracted from the file being processed. The details of the data extracted are given below for each data type. Finally, the ExtractMDStop field is updated in the appropriate tracker table and the script exits. If there are any errors, the errors are logged and the script exits with the proper error codes without updating the ExtractMDStop field.

The sections below describe in detail the metadata extract for various data types. When a date is specified, the format is “YYYY-MM-DD”. When a time is specified, the format is “YYYY-MM-DD HH:MM:SS”. When filling in a current time (e.g., the time a file was received or sent), the local time at the FSSC is used. Other times, which are taken from the name or contents of a data file (e.g., the starting time of validity), are UTC.

6.10.4.1 Level 0 Data

The metadata consist of the date of the start of the data contained in the file, the virtual channel number, and the data’s APID. These data come directly from the filename.

The Level 0 metadata are stored in the Lev0Metadata table. The columns in the Lev0Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	DataTime
	The start time of the first good packet in the data file.

	Vcnum
	The virtual channel number of the data in the file.

	APID
	The APID of the data in the file.

6.10.4.2 Integrated Observatory Timeline

The metadata consist of the start time and load name of the timeline, which are taken from the file name. Also recorded are the load start and load stop times extracted from within the file. For every timeline, the script also tracks which timeline proceeds and follows the current one. The Previous field is a key pointing to the IOTLMetadata entry of the IOTL for the previous timeline. The Next field is a key pointing the IOTLMetadata entry for the IOTL for the next time period. When a new IOTL is received this is set to NULL (the default value) and the Next field for the entry pointed to by the Previous field is set to point to the current file’s IOTLMetadata entry.

The metadata are stored in the IOTLMetadata table. The columns in the IOTLMetadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartTime
	The time of the first command in the file. This is extracted from the filename.

	LoadName
	The name of the command load as extracted from the filename.

	LoadStart
	The start time of the load as extracted from the file header.

	LoadStop
	The end time of the load as extracted from the file header.

	Previous
	IOTLMetadata table ID entry for the previous load file. The name of the previous load file is found in the file header.

	Next
	The next load that followed this one. This is NULL for the current load and updated when the next load is received.

6.10.4.3 ToO Acknowledgements and Notifications

When a ToO observation is desired, the FSSC sends a ToO order to the MOC. In response, the MOC send a ToO acknowledgement that they have received the ToO order and are processing it. When the ToO order has been upload to the spacecraft, the MOC send the FSSC a ToO execution notification. The acknowledgement and notification files that the FSSC receives come as FITS message files.

The ToO order tool creates an entry in the ToOTracker table for a ToO and fills in the File_Name, Request_ID, Description, and Date_Sent columns. When an acknowledgement or notification file is received, the extract script will check the RESPONSE keyword in the file to get the ToO order file name and File_Name value to determine the ToOTracker entry for the ToO. Then, it extracts the COM_ORIG keyword from the file to fill in the status column in the database table.
The columns in the ToOTracker table used by the Ingest System are:

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	Ack_ID
	FileLog ID number of the acknowledgement file.

	Ack_Date
	Time the acknowledgment file arrived.

	Ack_Status
	Status of the acknowledgment taken from the COM_ORIG keyword.

	Exec_ID
	FileLog ID number of the execution notification file.

	Exec_Date
	Time the execution notification file arrived.

	Exec_Status
	Status of the execution notification taken from the COM_ORIG keyword.

See Section 4.3.3 for more about the ToOTracker table.
6.10.4.4 MOC Command Logs

The metadata are the contact type and acquisition of signal time. Both are taken from the file name.

The command log metadata are stored in the CommandLogMetadata table. The columns in the CommandLogMetadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	ContactType
	A character field indicating the type of contact that generated the log. It will contain either ‘GS’ for a ground station contact or ‘WTDR’ for a TDRSS contact.

	AOSTime
	The Acquisition of Signal (AOS) time for the contact that generated the log.

6.10.4.5 Fermi and TDRSS Ephemerides

For these files, the metadata table tracks the start and stop times of the data contained in the file, which are taken directly from the filename. For the TDRSS ephemerides there is also a TDRSS satellite identification. This information also comes from the filename.

The ephemerides metadata are stored in the GephMetadata and TephMetadata tables for the Fermi and TDRSS ephemerides, respectively. The columns in the GephMetadata and TephMetadata tables are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartTime
	First day of covered by the ephemeris data in the file.

	StopTime
	Last day covered by the ephemeris data in the file.

	TDRSSid
	TephMetadata only. The identification tag for the TDRSS.

6.10.4.6 As-Flown Timeline

The As-Flown Timeline contains the actual observation times and attitude data. The metadata maintained are the start and end times covered by the file. This information is taken from the filename.

The metadata for the timeline is stored in the AFTLMetadata table. The columns in the AFTLMetadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartTime
	Start time covered by the timeline.

	StopTime
	End time covered by the timeline.

6.10.4.7 Requested TDRSS Contact Schedule

The metadata maintained for the Requested TDRSS Contact Schedule is the StartDate of the request and FinalSched, a key referencing the actual TDRSS Forecast Schedule file that contains the contacts actually received. The former is read from the filename and the latter is filled in later when the final contact schedule is received.

The metadata for this product is stored in the TDRSSRequestMetadata table. The columns in the TDRSSRequestMetadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartDate
	The first day of the TDRSS scheduling period for the request

	FinalSched
	TDRSSForecastMetadata table ID entry for the schedule of TDRSS contacts actually received for this period.

6.10.4.8 TDRSS Forecast Schedule

The metadata maintained for this product are the file creation time, the start and stops dates of the coverage in the file and a link to the Requested TDRSS Contact Schedule that covers the same time period. The file creation time comes from the filename. The start and stop times are determined by parsing the ‘EVENTSTART’ and ‘EVENTSTOP’ entries in the file itself. The link to the Requested TDRSS Contact schedule contains the ID value of the entry in the TDRSSRequestMetadata table of the file that covers the events contained in this file. The script then updates the FinalSched field in the above TDRSSRequestMetadata table entry to hold the ID for this TDRSSForecastMetadata entry.

The TDRSS Forecast Schedule metadata is stored in the TDRSSForecastMetadata table. The columns in the TDRSSForecastMetadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartDate
	The time of the first TDRSS contact in the file.

	StopDate
	The time of the last TDRSS contact in the file.

	CreationTime
	The creation time of the file as specified in the filename.

	RequestedSched
	TDRSSRequestMetadata table ID entry for the schedule of TDRSS contacts requested for this period.

6.10.4.9 LAT and GBM South Atlantic Anomaly Reports

These reports are generated weekly and contain thirty days of predicted start and stop times of SAA intervals. The script fills in the File column of the metadata table with the ID value from the FileLog for the file being processed and fills in the StartDate column with the starting date of the report, which is taken directly from the file name. A stop date is not kept, since it is always thirty days after the start date, and an updated prediction file will be sent in the next week.

The metadata for the LAT and GBM SAA Reports are stored in the LSAAReportMetadata and GSAAReportMetadata, respectively. The columns in the LSAAReportMetadata and GSSAReportMetadata tables are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartDate
	The starting date of the report.

6.10.4.10 Eclipse Entry and Exit Report

The eclipse entry and exit reports are generated weekly and contain thirty days of predicted start and stop times of sunlight periods. The extract script fills in the File column of the metadata table with the ID value from the FileLog for the file being processed and fills in the StartDate column with the starting date of the report, which is taken directly from the file name. A stop date is not kept, since it is always thirty days after the start date, and an updated prediction file will be sent in the next week.

The metadata for these files are stored in the EclipseReportMetadata table. The columns in the EclipseReportMetadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartDate
	The starting date of the report.

6.10.4.11 Memory Loads, PROC Execution Requests, and Science Timelines

The metadata stored for command files are primarily meant to be used by the command approver and scheduler. When a command file is received, the extract script creates an entry in the CommandMetadata table. It sets the Status column to PENDING, the Status_Change column to the current time, the Changed_By column to “Ingest”, and Change_Reason to “Initial entry”. Status changes are done outside the Ingest system. For example, FSSC personnel must approve a command file after assessing its impact on science observations. The values for the remaining columns are taken from the message file that accompanies the command file.

The columns in the CommandMetadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	Status
	Indicates the status of the command. Ingest will set this to PENDING. Changed to APPROVED if the command has been approved or REJECTED if the command is rejected. Approval and rejection occur outside the Ingest system. May be set to CANCELLED or SUPERSEDED if a new file arrives that either cancels or replaces the entry.

	Status_Change
	Time of last change of status.

	Changed_By
	Name of person who last changed the status.

	Change_Reason
	Reason the status of the file was changed (e.g., why it was rejected).

	Week
	Mission week in which to run the command. This is set by the Ingest system to the week number contained in the file name.

	Comment
	Original comment from the message file. Taken from the COM_ORIG keyword in the message file.

	Allowed_Times
	Time giving the allowed execution times. Taken from the ALLOW_TI keyword in the message file.

	Excluded_Times
	Time giving the excluded execution times. Taken from the EXCLUDE_T keyword in the message file, if present.

	File_Type
	Type of file (e.g., LAT Instrument Load). Taken from the FILETYPE keyword in the message file.

	Instrument
	Instrument affected by the command file (LAT, GBM or SPACECRAFT). Taken from the INSTRUME keyword in the message file.

	Op_Mode
	Operation mode, either REALTIME or ATS. Taken from the OP_MODE keyword in the message file.

	Obs_ID
	Observation number. Taken from the OBS_ID keyword in the message file, if present.

	Origin
	Mission element that sent the file. Taken from the ORIGIN keyword in the message file.

	Priority
	Command priority as indicated by the PRIORITY keyword. Either NORMAL or HIGH.

	Replaces
	FileLog ID of file that the file replaces the current file. Taken from the REPLACES keyword in the message file, if present.

	Required
	FileLog ID of file that depends on this file. Taken from the REQUIRED keyword in the message file, if present.

	Requires
	FileLog ID of file that must be executed before this file. Taken from the REQUIRES keyword in the message file, if present.

6.10.4.12 LAT and GBM South Atlantic Anomaly Definition Updates

The SAA definition updates provide a polygon used to define the SAA regions for each instrument. The script fills in the File column of the metadata table with the ID value from the FileLog for the file being processed, and CreationDate column with the date that the file was generated. The starting date is taken from the file name. When a new file arrives, it is entered in table with the Active column set to “1”, and the Active column is set to “0” for previous version of the update file.
The metadata are stored in the LSSAUpdateMetadata and GSSAUpdateMetadata tables. The columns in the LSSASUpdateMetadata and GSSAUpdateMetadata tables are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	CreationDate
	Date that the file was generated.

	Active
	Boolean flag indicating whether this entry is the active version of the definition.

6.10.4.13 Data Retransmission Requests

Retransmission requests are sent to the FSSC if a mission element requires that a file or set of file be resent (e.g., the original file has been corrupted or lost). The metadata taken from the retransmission request file name and consist of the date the retransmission request was made, the source of the retransmission request, and the date that the retransmission was carried out. In addition, the reason for the request is taken from the comment field inside the file (if given).

The metadata are stored in the RetransmissionMetadata table. The columns in the RetransmissionMetadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	RequestDate
	Date the request was made.

	Source
	Source facility making the request. Acceptable values are “MOC”, “LISOC”, or “GIOC”.

	Fullfilled
	Boolean indicating whether the request has been approved and carried out.

	SentTime
	Time the retransmission was performed. A post-processing script will fill in this column.

	Send_ID
	ID number of tar file sent from the File table in the Data transmission database.

	Comment
	Reason for the retransmission request taken from the comment inside the file.

6.10.4.14 GBM Daily Data

GBM daily data products are sent by the GIOC to the FSSC for each day GBM data was processed. The daily products are the CTIME and CSPEC daily versions (GS-001 & GS-002), the GBM gain and energy resolution history files (SPECHIST or GS-005), and Fermi position and attitude history file (POSHIST or GS-006). For the CTIME, CSPEC, and SPECHIST files, a file is sent for each of the 14 detectors.
The metadata are stored in the GBMDailyMetadata table. The table contains an entry for the day number and the start and stop times of the data. An entry is created for a day when a file is found for that day and an entry for that day does not already exist. Subsequent files for the day will simply fill in the appropriate columns in the table. The start and stop times are taken from the DATE-OBS and DATE-END keywords in the primary FITS header. The day number is derived by converting the start time to TJD. When a CTIME, CSPEC, or SPECHIST file is received, the <detector>_<filetype> column is filled in with the FileLog ID for that file. The detectors are named N0-NB for the NaI detectors and B0-B1 for the BGO detectors. The LastUpdate column is filled in whenever an entry is created or updated.

 The columns in the GBMDailyMetadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	LastUpdate
	Time the entry was last changed.

	DayNumber
	Day number of the observation in TJD.

	StartTime
	Start time of the data.

	StopTime
	Stop time of the data.

	POSHIST
	FileLog ID number of position and attitude history file.

	N0_CTIME
	FileLog ID number of CTIME file for the N0 detector.

	N0_CSPEC
	FileLog ID number of CSPEC file for the N0 detector.

	N0_SPECHIST
	FileLog ID number of gain and energy resolution history file for the N0 detector.

The table above only shows the columns for the N0 detector.

6.10.4.15 GBM Trigger and Burst Data
GS-101, GS-102, GS-103, GS-104, GS-107, GS-108
GBM trigger and burst data products are sent by the GIOC to the FSSC on a per event basis. For the purposes of the Ingest System, an “event” may be either a trigger (e.g., solar flare, transient) or a burst (i.e., a GRB). The data products are the same for both. They are the CTIME and CSPEC files (GS-101 & GS-102), the TTE files (GS-103), the DRMs (GS-104), TRIGDAT file (GS-107), and background files (GS-108). These are all FITS files.
The files for an event may arrive in any order. When the FSSC receives a data file, the script determines the event name from the file name. It then checks the GBMEventMetadata database table to see if an entry for this event already exists by matching with event name to the EventName column in the table. If an entry does not exist, a new entry is created. Once the entry is created or if an entry already exists, the FileLog ID of the data file is placed in the appropriate. When a CTIME, CSPEC, TTE, DRM, or background file is received, the <detector>_<filetype> column is filled in with the FileLog ID for that file. The detectors are named N0-NB for the NaI detectors and B0-B1 for the BGO detectors. The LastUpdate column is filled in whenever an entry is created or updated.

The columns in the GBMEventMetadata table are (only the columns for the N0 detector are shown):

	ID
	Auto-incrementing identifier number for this entry.

	EventName
	Burst name.

	LastUpdate
	Time the entry was last changed.

	TRIGDAT
	FileLog ID number of TRIGDAT file.

	N0_CTIME
	FileLog ID number of CTIME file for N0 detector.

	N0_CSPEC
	FileLog ID number of CSPEC file for N0 detector.

	N0_TTE
	FileLog ID number of TTE file for N0 detector.

	N0_CT_DRM
	FileLog ID number of CTIME DRM file for N0 detector.

	N0_CS_DRM
	FileLog ID number of CSPEC DRM file for N0 detector.

	N0_BCK
	FileLog ID number of background file for N0 detector.

GS-105 (Trigger Catalog Entry)

If the event is a trigger but not a burst, a trigger catalog entry file (GS-105) will be sent. The trigger catalog entry file contains basic information about the trigger in the header keywords that are read into the GBMTriggerMetadata table. The only currently defined values are the location of the trigger, the start and stop times, the classification of the trigger defined in the CLASS keyword, and a reliability measure of the classification (number between zero and one) contained in the RELIABLT keyword. Updates of the files may be set after the initial version with, e.g., updated parameters.
When a trigger catalog entry file is received, the script checks whether a trigger already exists in the table. If it does not, a new entry is created and the values in the list below are filled in. If an entry does exist, the current values in the table are overwritten with the new values in the file.
The columns in the GBMTriggerMetadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	TCAT
	FileLog ID number of trigger catalog entry file.

	TriggerName
	Burst name.

	RAObj
	Right ascension of the source from the RA_OBJ keyword.

	DecObj
	Declination of the source from the DEC_OBJ keyword.

	StartTime
	Start time of the data from the DATE-OBS keyword.

	StopTime
	Stop time of the data from the DATE-END keword.

	Class
	Classification of trigger from the CLASS keyword.

	Reliability
	Reliability of the classification from the RELIABLT keyword.

GS-106 (Burst Catalog Entry)

If the event is a burst, a burst catalog entry file (GS-106) will be sent. The burst catalog entry file contains derived information about the burst in the header keywords that are read into the GBMBurstMetadata table.
The columns in the GBMBurstMetadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	BCAT
	FileLog ID number of burst catalog entry file.

	BurstName
	Burst name.

	RAObj
	Right ascension of the source.

	DecObj
	Declination of the source.

	StartTime
	Start time of the data.

	StopTime
	Stop time of the data.

	Reliability
	Reliability of the classification from the RELIABLT keyword.

	Fluence
	1-1000 keV fluence from the FLU keyword.

	FluenceError
	Uncertainty of the fluence from the FLU_ERR keyword.

	PeakFlux
	50-300 keV peak flux from the PFLX keyword.

	PeakFluxError
	Uncertainty of the flux from the PFLX_ERR keyword.

	T50
	T50 duration from the T50 keyword.

	T50Error
	Uncertainty of the T50 duration from the T50_ERR keyword.

	T90
	T50 duration from the T90 keyword.

	T90Error
	Uncertainty of the T90 duration from the T90_ERR keyword.

When a burst catalog entry file is received, the script checks whether a burst already exists in the burst metadata table. If it does not, a new entry is created and the values in the list above are filled in. If an entry does exist, the current values in the table are overwritten with the new values in the file.

Since a burst also count as a trigger, the burst is also entered into the GBMTriggerMetadata table. The CLASS parameter is filled in with ‘GRB’. The other values are simply a subset of those in the GS-106 file.
6.10.4.16

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

GS-007 (GBM PHA Lookup Tables)
6.10.4.17
The PHA lookup tables list the correspondence between energy channels and the photopeak energy. There is one file per detector type per CTIME or CSPEC files (i.e., four files total). Updates occur periodically. The metadata maintained are the data and detector type to which the file corresponds, which are taken from the file name, and the date the file should first be used which is taken from the CVSD0001 and CVST001 keywords in the file primary header. The table also contains a status column. This is set to inactive when the file is entered into the table. A file can be flagged as active or replaced, but this occurs outside the Ingest system.

The metadata are stored in the GS007Metadata table. The columns in the GS007Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	CType
	Type of data that file corresponds to. Set to either CTIME or CSPEC.

	DetType
	Type of detector that file corresponds to. Set to either N for NaI detectors or B for BGO detectors.

	StartDate
	Time when the file should first be used.

	Status
	Indicates the status of the file. Set to INACTIVE by the Ingest System.

6.10.4.18 GS-008 (GBM Calibration)
The files are tables of detector response parameters from which burst specific DRMs are calculated. There is one file per zenith and azimuth pointer per detector. The metadata maintained are the detector, zenith angle, azimuth angle, which are taken from the file name, and start date of validity, which is taken from the CVSD0001 and CVST0001 keywords in the primary header. The table also contains a status column. This is set to inactive when the file is entered into the table. A file can be flagged as active or replaced, but this occurs outside the Ingest system.

The metadata are stored in the GS008Metadata table. The columns in the GS008Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	Detector
	Detector for dataset (e.g., N0).

	Zenith
	Zenith angle for response calibration.

	Azimuth
	Azimuth angle for response calibration.

	StartDate
	Date when the file should first be used.

	Status
	Indicates the status of the file. Set to INACTIVE by the Ingest System.

6.10.4.19

	
	

	
	

	
	

	
	

6.10.4.20

	
	

	
	

	
	

	
	

6.10.4.21

	
	

	
	

	
	

	
	

6.10.4.22
6.10.4.23 LS-001 (LAT Event Summary Data)

Each file contains a database that summarizes information for each LAT event telemetered to the ground. The metadata are the day of the contact and the contact number for that day, which are taken directly from the file name, the total exposure time contained in the ONTIME keyword of the GTI extension, and the total number of events in the file from the NAXIS2 keyword of the EVENTS extension.

The metadata are stored in the LS001Metadata table. The columns in the LS001Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	Contact_Date
	Date of the contact.

	Contact_Number
	Contact number for the contact date.

	Ontime
	Observation length from the ONTIME keyword of GTI extension.

	Events
	Number of events from the NAXIS2 keyword of the EVENTS extension.

LS-002 (LAT Photon Summary Data)

Each file contains a database that summarizes information for each LAT photon telemetered to the ground. The metadata are the day of the contact and the contact number for that day, which are taken directly from the file name, the total exposure time contained in the ONTIME keyword of the GTI extension, and the total number of events in the file from the NAXIS2 keyword of the EVENTS extension.
The metadata are stored in the LS002Metadata table. The columns in the LS002Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	Contact_Date
	Date of the contact.

	Contact_Number
	Contact number for the contact date.

	Ontime
	Observation length from the ONTIME keyword of GTI extension.

	Events
	Number of events from the NAXIS2 keyword of the EVENTS extension.

6.10.4.24

	
	

	
	

	
	

6.10.4.25

	
	

	
	

	
	

6.10.4.26 LS-005 (LAT Pointing and Livetime History)
These files contain a record of the pointing, instrument mode, and livetime for regular time intervals (~30s).

The metadata are stored in the LS005Metadata table. The columns in the LS005Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	Contact_Date
	Date of the contact.

	Contact_Number
	Contact number for the contact date.

6.10.4.27 LS-006 (LAT Configuration History)
The configuration history contains the configuration and updates to the configuration of the LAT.

The metadata re stored in the LS006Metadata table. The columns in the LS006Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartDate
	Date the configuration was changed.

6.10.4.28 LS-007 (LAT Transient Parameters)
The transient data file summarizes information for transient sources detected by the LAT. It contains preliminary parameters and partial light curves.

The metadata are stored in the LS007Metadata table. The columns in the LS007Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	SourceName
	Name if the transient souce

	RAObj
	Right ascension of the source.

	DecObj
	Declination of the source.

	StartTime
	Start time of the data.

	StopTime
	Stop time of the data.

6.10.4.29 LS-008 (LAT Point Source Catalog)
The point source catalog contains information about point sources detected by the LAT.

The metadata are stored in the LS008Metadata table. The columns in the LS008Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	BrowseDate
	Date when the file is used to create a new Browse table.

	Status
	Indicates the status of the file. Set to INACTIVE by the Ingest System.

6.10.4.30 LS-009 (LAT Burst Catalog)
The burst catalog contains information about bursts detected by the LAT.

The metadata are stored in the LS009Metadata table. The columns in the LS009Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	BrowseDate
	Date when the file is used to create a new Browse table.

	Status
	Indicates the status of the file. Set to INACTIVE by the Ingest System.

6.10.4.31 LS-010 (Interstellar Emission Model)
The file contains a model of the interstellar emission from the Milky Way for use in LAT data analysis.

The metadata are stored in the LS010Metadata table. The columns in the LS010Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartDate
	Date when the file should first be used.

	Status
	Indicates the status of the file. Set to INACTIVE by the Ingest System.

LS-011 (LAT Energy Redistribution)
This file contains onstants for parameterization of the LAT’s energy redistribution.
The metadata are stored in the LS011Metadata table. The columns in the LS011Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartDate
	Date when the file should first be used.

	Status
	Indicates the status of the file. Set to INACTIVE by the Ingest System.

LS-012 (LAT Effective Area)
This file contains constants for parameterization of the LAT’s effective area.

The metadata are stored in the LS012Metadata table. The columns in the LS012Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartDate
	Date when the file should first be used.

	Status
	Indicates the status of the file. Set to INACTIVE by the Ingest System.

LS-013 (LAT Point Spread Function)
This file contains constants for parameterization of the LAT’s point spread function.

The metadata are stored in the LS013Metadata table. The columns in the LS013Metadata table are:

	ID
	Auto-incrementing identifier number for this entry.

	File
	FileLog ID number of the file.

	StartDate
	Date when the file should first be used.

	Status
	Indicates the status of the file. Set to INACTIVE by the Ingest System.

6.10.5 Possible Errors

In the table below, italics in the error message indicate something that is replaced by the script with an appropriate value (e.g., the name of the file).

	Error Code
	Error
	OPUS Code
	Error Message

	14
	BAD_DIR_SPEC
	e
	“Cannot change to $from_dir.”

	
	
	
	

	4
	FAIL
	e
	“Could not parse file”

	
	
	
	

	17
	CANT_OPEN_FILE
	e
	“Can't open $infile.”

	36
	NO_ENTRY
	e
	“Could not find $datafile in $metatable.”

	80
	TIMED_OUT
	e
	“Missing files for $entry in $table.”

	81
	SEND_FAILED
	e
	“Sending TDAT file failed”

	15
	CANT_COPY_FILE
	e
	“Can’t copy $file to $destination”

6.10.6 Flow Diagram

[image: image21.png]
Figure 17 - Flow diagram for the extract.pl script.
6.11 priority.pl

OPUS stage ID: PC (Priority Check)

6.11.1 Input

1. OSF_DATASET environment variable

2. OSF_DATA_ID environment variable

3. Location of the processing directory specified in the ingest_files.xml file for each data type.

6.11.2 Effect

1. The PriorityCheckStart field is filled in the CommandTracker database.

2. The PRIORITY keyword value is read for the accompanying message file.

3. If the value of the PRIORITY keyword is ‘HIGH’ the command is immediately forwarded to the MOC.

4. The PriorityCheckStop field is filled in the CommandTracker database.

5. All errors are logged to the ErrorLog table.

6. If any of these steps fail, the appropriate error is raised and an appropriate OPUS status code (defined in Section 6.10.5) should occur in the OPUS system for the PC stage.

7. Upon successful complete of the script, a ‘c’ entry should occur in the PC stage of the OPUS system. A ‘w’ entry should be generated in the VR stage of the pipeline.

6.11.3 Triggers

This script is triggered by a ‘w’ entry in the PC stage of the Command path in the OPUS system created by the successful completion of the archive.pl script.

6.11.4 Description

This script checks the command priority for received commands (memory loads, PROC execution requests, and ATS timelines). For normal operations, the PRIORITY keyword should be set to ‘NORMAL’ for all commands received from the GIOC and LISOC. However, in rare cases there may be a need to transmit commands directly to the MOC without the intervening steps of verification by the FSSC. In these situations the PRIORITY keyword is set to ‘HIGH’. This stage of the command processing branch checks the PRIORITY keyword for all incoming commands. If the keyword is set to ‘HIGH’, the EDITOR keyword in the message file is set to the $USER, and a HISTORY field is added with “Passed to MOC by FSSC.”.

The script then creates manifest file for the message file and command file and then creates a tar file contain the message, data, and manifest files, and send this tar file to the MOC. If the keyword is set to ‘NORMAL’, then the script simply exits. In either case the normal processing of the command continues. If the PRIORITY keyword is missing or set to a value other than NORMAL or HIGH, the script exit with an error.

6.11.5 Possible Errors

In the table below, italics in the error message indicates something that is replaced by the script with an appropriate value (e.g., the name of the file).

	Error Code
	Error
	OPUS Code
	Cause

	52
	BAD_FILE_FORMAT
	e
	“Can't read PRIORITY keyword for $msgfile.”

	
	
	
	“Unknown value for PRIORITY keyword: $priority.”

6.11.6 Flow Diagram

[image: image22.png]
Figure 18 - Flow diagram for priority.pl script

6.12 process.pl

OPUS stage ID: PR (Process data)

6.12.1 Input

1. OSF_DATASET environment variable

2. OSF_DATA_ID environment variable

3. Location of the processing directory specified in the ingest_files.xml file for each data type.

6.12.2 Effect

1. The ProcessStart field is filled in the ProcessDataTracker database.

2. The appropriate data-specific processing steps are carried out based on the data type specified in the OSF_DATA_ID environment variable. The details of this processing are described below in the Descriptions section.

3. The ProcessStop field is filled in the ProcessDataTracker database.

4. All errors are logged to the ErrorLog table.

5. If any of these steps fail, the appropriate error is raised and an appropriate OPUS status code (defined in Section 6.11.5) should occur in the OPUS system for the GN stage.

6. Upon successful complete of this script, a ‘c’ entry should occur in the GN stage of the OPUS system. A ‘w’ entry should be generated in the CU stage of the pipeline.

6.12.3 Triggers

This script is triggered by a ‘w’ entry in the MD stage of the Command path in the OPUS system created by the successful completion of the extract.pl script.

6.12.4 Description

This script generates derived data products from a file that are necessary for external use, such as adding data to the photon database or creating TDAT files for HEASARC’s Browse. The script starts by updating the ProcessStart field in the appropriate tracker database table. Then the data specific processing is done. The details of the data processing are given below for each data type. Finally, the ProcessStop field is updated in the appropriate tracker table and the script exits. If there are any errors, the errors are logged and the script exits with the proper error codes without updating the ProcessStop field. The exit code is caught and handled properly by the OPUS system.

6.12.4.1 L0 Data

For Level 0 files that must have ITAR controlled information removed, the script runs the executable provided by the LISOC and forward the resulting “redacted” files to the LISOC.
6.12.4.2 GBM Daily Data

GBM daily data products are sent by the GIOC to the FSSC for each day GBM data was processed. The daily products are the CTIME and CSPEC daily versions (GS-001 & GS-002), the GBM gain and energy resolution history files (SPECHIST or GS-005), and Fermi position and attitude history file (POSHIST or GS-006). For the CTIME, CSPEC, and SPECHIST files, one file is sent for each of the 14 detectors totaling 43 files per package. The daily products are not necessarily sent in a single batch, and no processing order for the files can be assumed. OPUS processes files independently without knowledge of the other files that are part of the daily data package. The POSHIST file triggers the processing of daily data files. The other daily data files go through the FileData branch where they are simply archived in a directory for each day of data.

When the POSHIST file reaches the process stage, the script determines the day number of the file. It then checks the GBMDailyMetadata table for the entry for that day. If there is no entry for that day, then it will immediate exit with an error since an entry should have been created during metadata extraction. The script dumps the contents of the GBMDailyMetadata table (minus all the columns for the files IDs) to create the TDAT file and copies the TDAT file to directory specified in the configuration file. The TDAT header information and other information about the TDAT file are stored in the tdat_headers.config file stored in the configuration file directory. The data files should already have been archived to the HEASARC archive by the archive.pl script.

6.12.4.3 GBM Trigger and Burst Data
GBM trigger and burst data products are sent by the GIOC to the FSSC on a per event basis. For the purposes of the Ingest System, an “event” may be either a trigger (e.g., solar flare, transient) or a burst (i.e., a GRB). The data products are the same for both. They are the CTIME and CSPEC files (GS-101 & GS-102), the TTE files (GS-103), the DRMs (GS-104), TRIGDAT file (GS-107), and background files (GS-108). If an event is a trigger, then a trigger catalog entry file (GS-105), which contains derived information about the trigger, will also be sent. If it is a burst, then a more detailed burst catalog entry file (GS-106) will also be sent. For each trigger, a new version of the GBM Trigger catalog TDAT file must be created and sent to the HEASARC to update Browse. Since bursts are also triggers, new versions of the GBM Trigger and GBM Burst catalogs must be created when a burst is received. These products are not necessarily sent in a single batch, and no processing order for the files can be assumed. OPUS processes files independently without knowledge of the other files in that are part of the daily data package. An additional constraint is that we cannot know whether a given data file will be part of either a trigger or a burst until the catalog entry file arrives. The trigger and burst data are handled similarly to the daily data. The trigger catalog entry file (GS-105) and burst catalog files are the only files to go into the ProcessData branch. The rest go into the FileData branch.
When a catalog entry file is received, the script determines the trigger/burst number and checks that the TRIGDAT files has also been entered into the GBMEventMetadata table for that number. If the catalog file is a trigger catalog file, the script dumps the contents of the GBMTriggerMetadata table to create a TDAT file (without the column that hold file IDs) and copies the TDAT file to directory specified in the configuration file. The TDAT header information and other information about the TDAT file are stored in the tdat_headers.config file stored in the configuration file directory. The data files should already have been archived to the HEASARC archive by the archive.pl script. Bursts are handled the same way but except more columns (taken from the GS-106 file) are included in the TDAT files.
If not all the TRIGDAT files has been processed, the script will check if it has been more than 24 hours since the LastUpdate time in the GBMEventMetadata table. If it has been more than 24 hours, the script will exit with an error. If it is less than 24 hours, the script will exit with an “incomplete” code (see Section 6.11.5). OPUS will restart the process script approximately every hour, and the steps outlined above will repeat until all the files have arrived or the 24 hours have expired.

6.12.4.4

6.12.4.5 LAT Event and Photon Summary Data
The script will call an external program to read these files into the LAT event and photon databases.

6.12.4.6 LAT Pointing and Livetime History

The script will call an external program to input these files into the LAT data server database.

6.12.4.7 LAT Point Source and Burst Catalogs

These products are FITS files that contain parameters about transients, point sources, and bursts that are served to the user community via HEASARC’s Browse. The contents of these files are read into a metadata table by the extract.pl script. During the process step, the contents of a metadata table are dumped to a TDAT file. The header information for the TDAT file is stored in the tdat_headers.config file stored in the configuration file directory.

6.12.5 Possible Errors

In the table below, italics in the error message indicates something that is replaced by the script with an appropriate value (e.g., the name of the file).

	Error Code
	Error
	OPUS Code
	Cause

	4
	FAIL
	e
	Missing files for GBM daily or burst data.

Could not read TDAT header information.

External program failed.

	36
	NO_ENTRY
	e
	No entry for day number in metadata table.

No entry for trigger or burst in metadata table.

	32
	DB_READ_ERROR
	d
	Failed trying to read from the database.

	81
	INCOMPLETE
	i
	Package (daily, burst, or trigger) is incomplete.

6.12.6 Flow Diagram

[image: image23.png]
Figure 19 - Flow diagram for process.pl script

7 Script Error/Exit Codes

In order for the OPUS framework to properly recognize and process the errors that occur during operation, all scripts must exit with a status code between 0 and 99. These error/exit codes and associated error messages are all printed to standard output and logged to the ErrorLog database table where they can be extracted and processed. Table 31 lists all the defined error/exit codes for the Ingest System. The first column is the exit code returned to OPUS, the second a short error code used internally by the scripts to represent the error code, and the last column describes the error message in more detail. The errors have been broken up into various categories

Table 31 - All Error Codes for Ingest scripts

	General error conditions

	0
	PASS
	Success.

	1
	WARNING
	A warning is logged to be database but does not cause the script to exit.

	2
	MULTIPLE_ERRORS
	More than one different type of error has been encountered.

	3
	UNKNOWN_ERROR
	Error does not correspond to any known error in this table.

	4
	FAIL
	General error if no other seems appropriate.

	Environment/Setup errors

	10
	ENV_NOT_DEFINED
	Necessary environment variable is not defined.

	11
	FILE_NOT_FOUND
	File cannot be found.

	12
	NO_SUCH_DIR
	Directory cannot be found.

	13
	CANT_CREATE_DIR
	Directory cannot be created.

	14
	BAD_DIR_SPEC
	Cannot access or change to given directory.

	15
	CANT_COPY_FILE
	Cannot copy the file.

	16
	CANT_MOVE_FILE
	Cannot move the file.

	17
	CANT_OPEN_FILE
	Cannot open the file for reading.

	18
	CANT_EXEC_QUERY
	Failed when trying to run external command.

	19
	WRONG_USAGE
	Wrong input or syntax given to routine.

	20
	KILLED
	External agent has killed the script while running.

	21
	WRITE_ERROR
	Error writing to a file.

	22
	READ_ERROR
	Error reading from a file.

	23
	DISK_FULL
	Available disk space is too small for file size.

	DB errors

	30
	CANT_CONNECT_DB
	Cannot connect to the database.

	31
	CANT_DISCONNECT_DB
	Cannot disconnect to the database.

	32
	DB_READ_ERROR
	Error when trying to read from the database.

	33
	DB_WRITE_ERROR
	Error when trying to write to the database.

	34
	CANT_UPDATE_DB
	Error when trying to update a database table.

	35
	ENTRY_EXISTS
	Entry for the file already exists in the database.

	36
	NO_ENTRY
	Necessary database entry does not exist.

	Identify errors

	50
	NOT_YET_IMPLEMENTED
	File could not be identified.

	52
	BAD_MESSAGE_FILE
	Message file is bad (e.g., is not FITS or bad internal checksum).

	53
	NO_MESSAGE_FILE
	No message file found for data file that should have one.

	Verify errors

	70
	FITS_ERROR
	General error when trying to read/write a FITS file.

	71
	CHECKSUMS_DO_NOT_MATCH
	Two checksums being compared do not match.

	72
	BAD_CHECKSUM
	Checksum is not correct (e.g., internal message file checksum).

	73
	BAD_DATE_RANGE
	Date range is not correct (e.g., for ephemeris files).

	74
	BAD_FILE_FORMAT
	Format of file is not correct (e.g., does not match ICD).

	75
	BAD_VERSION
	Version number of file conflicts (e.g., later version already in database).

	76
	COMMAND_NOT_FOUND
	Spacecraft or instrument command is not in project database.

	Cleanup errors

	90
	CANT_REMOVE_DIR
	Directory could not be deleted.

	91
	CANT_REMOVE_FILE
	File could not be deleted.

DRAFT v1.3v2.0	

November 10, 2008March 30, 2006

GLAST FERMI SCIENCE SUPPORT CENTER

INGEST SYSTEM DETAILED DESIGN

GODDARD SPACE FLIGHT CENTER

GREENBELT, MARYLAND

FERMI GAMMA-RAY LARGE AREA

SPACE TELESCOPE

(GLAST)

Ingest

�PAGE \# "'Page: '#'�'" ��Need id number for SPD ICD

�PAGE \# "'Page: '#'�'" �� How is this going to be checked?

�PAGE \# "'Page: '#'�'" ��Not currently doing this. Should implement for all branches as well. When will this be implemented?

53
Check http://glast.gsfc.nasa.gov/ssc/dev/baselined_documents/ for the latest baselined version

and http://glast.gsfc.nasa.gov/ssc/dev/current_documents/ for the latest draft version

