

FERMI-LAT MEASUREMENT OF COSMIC-RAY POSITRON SPECTRUM USING THE EARTH'S MAGNETIC FIELD

> Carmelo Sgrò INFN-Pisa carmelo.sgro@pi.infn.it

on behalf of the Fermi LAT collaboration

219th AAS, Jan 09, 2012

SURPRISES IN COSMIC RAY ELECTRON PHYSICS

- PAMELA reported an increasing fraction of e^+ as a function of energy
- Fermi-LAT measured a hard $e^+ + e^-$ spectrum up to 1 TeV

PAMELA, Nature 458, 607-609 (2009)

Fermi-LAT, PRL, 102, 181101 (2009)

- Conventional paradigm in which e⁺ are only secondary particles (i.e. produced by interactions in the ISM) may no longer be accurate
- A new piece to the puzzle from the LAT: measurement of the separate e⁺ and e⁻ spectra

How we can distinguish e^+ and e^-

- The LAT is a γ -rays telescope designed for e.m. showers
 - It doesn't carry a magnet on-board: no direct particle charge measurement
- We can use the Earth magnetic field to identify charge!
 - Geomagnetic field shadows some of the particle's trajectories

- Pure e⁺ region in the West direction and pure e⁻ region in the East
 - Regions vary with particle energy and spacecraft position
 - Need particle tracing code (from Smart&Shea) and a model of the Earth's magnetic field (IGRF)

SEPARATE e^+ AND e^- SPECTRA

- Energy range up to 200 GeV
 - Constrained by the bending power of the Earth magnetic field
- Two independent background subtraction methods (MC-based and data-driven) in good agreement with each other
- ▶ Ratio between sum $J(e^+) + J(e^-)$ and $J(e^+ + e^-)$ is consistent with 1

POSITRON FRACTION

- Derived from separate e⁺ and e⁻ spectra
- Rise with energy is confirmed up to 200 GeV
- ► Analysis details published on Phys. Rev. Lett. 108, 011103 (2012)
- Many possible explanations: local astrophysical sources, dark matter, nonstandard secondary production, ...

EXTRA

A model with additional source of e^+ and e^-

- An example of CR propagation models compared with new Fermi LAT measurement (from arXiv:1110.2591)
 - Conventional propagation scenario (dotted lines in plot on the left)
 - New source of e^+ and e^- added (continuous line in plot on the left)
- Right figure shows how the double component model matches the LAT e⁺ and e⁻ spectra
- ► This model was proposed in a previous Fermi LAT publication PRD 82, 092004 (2010) – to fit LAT e⁺ + e⁻ spectra and Pamela positron fraction

EXPOSURE IN THE 3 REGIONS

- Three regions used in this analysis: $e^+ + e^-$, e^- , e^+
 - Smaller e⁻-only and e⁺-only as energy increases
- Useful data only when the LAT is looking down at the Earth
 - \blacktriangleright ~39 days of livetime, up to April 2011, taken in non-survey mode

IDENTIFY e^- -ONLY AND e^+ -ONLY REGIONS

Example of region boundary for one real event:

- e^+ are forbidden inside blue curve
- *e*⁻ are forbidden inside red curve

▶ We find the curve that separates permitted from forbidden part of the sky

- In Earth-centered coordinate system
- Assuming e⁻ and e⁺ separately
- Particle trajectories are numerically traced in geomagnetic field
 - Using code written by Smart & Shea (Final Report, Grant NAG5-8009, 2000)
- Region boundaries vary with energy and LAT position in the orbit
 - They are calculated for each event

BACKGROUND SUBTRACTION TWO INDEPENDENT METHODS

- Main background is residual CR proton
- Up to \sim 60% in e^+ after event selection
- ▶ 2 independent methods for background subtraction

Fit-Based Method

- Relaxed event selection
- The distribution of transverse shower size in the CAL shows separate signal and background peaks
- Fit the distributions with 2 Gaussians to determine signal

Systematic Errors: $e^+: 5-13\%$ $e^-: 5-9\%$ $e^+ + e^-: 5-9\%$ MC-Based Method

- Use standard event selection
- Produce a large set of CR proton
- Apply event selection to simulation to estimate surviving background

Systematic Errors: $e^+: 8-19\%$ $e^-: 5-8\%$ $e^+ + e^-: 5-7\%$

FIT-BASED BACKGROUND SUBTRACTION

- Gaussian function found to be an adequate approximation for these distributions
- Fitting is "easy" for e⁺ + e⁻ and e⁻, but is more challenging for e⁺
 - Small signal-to-noise makes fit unstable when all parameters are free
 - Average and σ of signal pdf are fixed using a "reference" dataset: events in e⁺ + e⁻ region resampled in angle

ATMOSPHERIC EMISSION

- Region boundaries correspond to location of atmospheric secondary emission
 - CR interacting in the Atmosphere
 - ► Same mechanism as *γ*-ray limb
- Atmospheric particle peak observed where the particle trajectory tracing predicts
- ▶ A cut (vertical line) is applied to remove atmospheric particles
 - Estimated residual contamination included in systematics

THE LARGE AREA TELESCOPE

Large Area telescope

- Overall modular design
- 4×4 array of identical towers (each one including a tracker and a calorimeter module)
- Tracker surrounded by an Anti-Coincidence Detector (ACD)

