D	iscovery of Evidence for Correlated X-ray/Ge Variability in the Feb 2010 Flare of Mrk 421	Commaray Space Telescope
Sermi	G. Madejski ¹ , J. Chiang ¹ , S. Fegan ² , B. Giebels ² & D.Horan ² on behalf of the <i>Fermi</i> -LAT collaboration	
Gamma-ray Space Telescope	¹ KIPAC, SLAC National Accelerator Laboratory, Menlo Park, CA, USA ² Laboratoire Leprince Ringuet / Ecole Polytechnique, Palaiseau, France	Eeth
	2012 AAS, 08-12 January 2012, Austin, Texas	

Abstract: The high-synchrotron-peaked BL Lac (HBL) Markarian 421 was observed during a bright X-ray flaring period in February 2010, in the GeV band by the *Fermi* Large Area Telescope, and in X-rays by the RXTE, *Swift*, and MAXI observatories. For the first time in a HBL, we find evidence for correlated variability between the X-ray and GeV emission. Including data from the UVOT instrument aboard *Swift*, we model the spectral energy distribution of the source in the pre-flare, flare and post-flare time periods using a standard synchrotron self-Compton (SSC) model. In the context of these models, the GeV and X-ray emission arise from electrons with significantly different energies in the particle distributions that are inferred from the models.

1. Analysis of the multi-wavelength data:

This study focusses on a well-defined X-ray flare from Mrk 421, which peaked on MJD 55243 (2010 Feb 16). The HE gamma-ray flux measured with the Fermi-LAT was sufficiently high that a daily-binned light curve could be derived. In Xrays, the MAXI data provide the best temporal sampling, while the X-ray spectrum was derived from the public *Swift*-XRT data.

The *Fermi*-LAT data were analyzed using a binned maximum-likelihood method as implemented in the ScienceTools package, using the P7SOURCE_V6 event selection and instrument response functions. We analyzed events with energies between 100 MeV and 100 GeV from a 10° region of interest (ROI) around Mrk 421. To reduce contamination from atmospheric gamma rays only events with a reconstructed zenith angle of less than 100° were considered. A model for the emission in the ROI was constructed, including all 2FGL point sources in the ROI [1], from which the parameters of a power-law (PL) fit to the spectrum of Mrk 421 were extracted. A light curve was produced by binning the data during the 24-day period surrounding the flare into 1-day time periods. The spectral evolution of the source during the flare was evaluated by dividing the data into three 4-day time periods, as discussed in Section 2, and calculating the parameters of the best-fit PL spectrum in each period.

Given the high X-ray flux, the XRT observations were made in windowed observation mode to avoid pileup effects. The data were reduced with the HEASOFT 6.11 package including the standard *xrtpipeline* and the *Xspec* analysis tools. A logparabolic spectral model was systematically preferred for all observations. The MAXI data were taken from the public webpage and averaged

2. Correlated X-ray and GeV variability:

Figure 1 shows the *Fermi*-LAT lightcurve for a 24-day period surrounding the X-ray flare, with 1-day binning. There is a clear enhancement of the GeV flux, reaching a peak between MJD 55243 and 55245. Due to the poor statistics we were unable to test for variability in the spectral index on 1-day timescales. Instead, we identify three epochs based on the gamma-ray flux, as shown in Table 1, which we label pre-flare, *flare* and *post-flare* and calculate the spectrum for each. These spectra are presented in the next section and discussed in the context of the lightcurve with 1-day binning. multi-wavelength observations.

Figure 2 shows the X-ray lightcurve from MAXI, with the same binning as in Figure 1. The X-ray flare is clearly visible, reaching a peak during MJD 55243, when the GeV flare was also at its highest.

The Pearson correlation coefficient between the two datasets is ρ =0.57, corresponding to

 Table 1: Temporal periods defined by the GeV
 flux state around the flare.

Fig. 1: Fermi-LAT gamma-ray

Fig. 2: MAXI X-ray lightcurve with 1-day binning.

over 1-day time bins.

The UVOT dataset comprised 59 exposures from MJD 55234 to 55247. Source counts were extracted from a 4.5° region around Mrk 421 and background counts from four same-sized neighbouring regions. Fluxes were computed using *uvotsource* with calibration, extinction and E(B-V) values from [2,3,4] respectively.

3. Spectral energy distributions:

The multiwavelength data were fit using the single-zone SSC model of [5]. For all three epochs, we assume a magnetic field B=0.01G and a Doppler factor δ =24 (see e.g. [6]). We model the electron distribution as a broken power law and we include an optical-UV contribution from the host galaxy using the model of [7].

For each of the *pre-flare* and *post-flare* epochs, two SEDs are derived. The solid curves were fit to the shape of the peak of the synchrotron emission in the X-rays (with the UVOT data providing an upper limit constraint) while matching the mid-

Table 2: Parameters of SSC models shown in Figure 3.

Epoch (curve)	γbreak (10 ⁵)	p 1	p 2	n _e (cm ⁻³)	R _b (10 ¹⁶ cm)	R₀/cδ (days)	u _B /u _E (10 ⁻³)
Pre-flare (solid)	4.0	2.5	4.2	0.34	4.62	0.76	5.0
Pre-flare (dots)	3.7	1.7	3.9	3.39	0.59	0.1	0.13
Flare	6.0	2.0	3.4	0.13	1.61	0.26	0.90

Epoch	Start MJD	End MJD		
Pre-flare	55238	55242		
Flare	55242	55246		
Post-flare	55246	55250		

an approximately 3σ detection of correlation between the GeV and X-ray fluxes, neglecting statistical errors (the p-value is 0.0041).

Fig. 3: Spectral energy distributions and one-zone SSC model predictions for the three epochs from simultaneous UVOT, XRT and *Fermi*-LAT observations.

point of the flux in the LAT band; the dotted curves were fit to the slope and flux in the LAT band, and the synchrotron peak was adjusted to match the peak of the X-ray data, without regard to the lower energy tail of the X-ray spectrum. For the *flaring* epoch (red curve), a single set of parameters was sufficient to fit the X-ray/GeV data.

In the *pre-flare* epoch, the fit parameters for the X-ray-constrained (solid, left panel) and GeV-constrained (dotted, right panel) cases are sufficiently different that the overall a second based and the second se

Post-flare (solid)	6.0	2.4	3.5	4.8E-03	2.03	0.33	5.2	SED cannot be described by a single zone model. The same is probably true for the
								- post-flare epoch, though the differences in the physical parameters are less pro-
Post-flare (dots)	60	23	37	2 8F-02	3 06	05	57	beet have speen, alleage and another of the open of th
1 031 11410 (0013)	0.0	2.0		0.7	_ nounced. The parameters of the SSC models for all epochs are given in Table 2.			

4. Conclusions:

We have presented evidence for correlated variability of the GeV and X-ray emission on day-long timescales from the HBL Mrk 421 during an intense flare. Correlations between the X-ray and the Comptonized emission on such short timescales has previously only been detected in the TeV regime. Assuming a standard one-zone SSC paradigm, our observations establish a link between the low-energy electrons responsible for the GeV emission through the inverse-Compton process and the highenergy electrons radiating X-rays through the synchrotron process. When a one-zone SSC model is applied to the broad-band spectra for different flux states, only the period of the *flare* can be adequately modeled. One way that the discrepancy in the *pre-flare* and *post-flare* states might be resolved is to assume that multiple emission zones contribute to the flux during these epochs, whereas the *flaring* period is dominated simply by emission from a single zone. We conclude by noting the importance of all-sky X-ray and gamma-ray instruments, such as MAXI and the Fermi-LAT, without which short-timescale events such as this would likely go unnoticed.

References: [1] Abdo, A.A. et. al, 2011, arXiv:1108.1435, [2] Breeveld, A.A. et al., 2011, AIPC, 1358, 373, [3] Roming, P.W.A. et al., 2009, ApJ, 690, 163, [4] Schlegel, D.J. et al., 1998, ApJ, 500, 525, [5] Böttcher, M., & Chiang, J., 2002, ApJ, 581, 127, [6] Tramcere, A., et al., 2009, A&A, 501, 879, [7] Katarzyński, K., Sol, H., Kus, A., 2003, A&A, 410, 101

Preliminary

