www.nasa.gov/fermi

219th AAS Meeting January, 8-12 2012 Austin, TX, US

A Combined Analysis on Clusters of Galaxies Gamma Ray Emission from Cosmic Rays and Dark Matter

Stephan Zimmer, Jan Conrad On behalf of the Fermi-LAT Collaboration

> and Anders Pinzke

Gamma Rays from Clusters of Galaxies

- Largest virialized and most massive structures in the universe
- Radio emission
 suggests
 rel. CR
 population

Profiles from Gas Maps (X-ray observations) NFW w/o substructure

Cosmic Rays

- Hadronic model with π^o-induced γrays
- Flux proportional to mass and hadronic injection efficiency, η

Dark Matter

- WIMP annhihilation/ decay
- Yield can be boosted from substructure

Lensing and X-Ray

High Backgrounds

observations indicate large dark matter (DM)

Looking at the 'Stacked Residual Map' (results from previous analysis iteration)

- 24 Months of Fermi-LAT data, p6v11
 Diffuse class Events
- Binned analysis, 10 deg ROI, 20 Energy Bins from 200 MeV – 100 GeV
- Clusters modeled as point sources!

-2.4

-1.8

-1.2

No significant excess in stacked residual map! Cluster Center (NED) **Resid**ual [σ] PRELIMINARY

1.2

0.6

1.8

2.4

Stephan Zimmer On behalf the Fermi-LAT Collaboration

-0.6

0.0029

Looking at the 'Stacked Residual Map'

(results from previous analysis iteration)

We don't see anything!

- In both cases, CR and DM have common parameter in all clusters:
 - Annihihilation cross section or decay time ($<\sigma v>$ or τ)
 - Maximum Injection Efficiency, η
- Powerful tool that puts tight constraints on a parameter of interest, profiling over nuisance parameters
- Implemented in Fermi Science Tools through MINUIT and MINOS
 - Common Parameter for all Clusters (e.g. <σv> for DM)
 - Individual Nuisance Parameters (e.g. Point Source Parameters, diffuse normalizations)

$$L\langle\langle\sigma v\rangle, m_{WIMP}|obs\rangle = \prod L_i \langle\langle\sigma v\rangle, m_{WIMP}, c, b_i|obs_i\rangle$$

• For more details on technique see Ackermann et al. Phys. Rev. Lett. 107, 241302 (2011)

- Combined DM Limits ~ factor 2 better than individual ones (varying for cluster and mass points)
- Initial CR results favor $\eta \leq 0.5$
- **Coma only constraining** cluster in CR analysis (limits below 0.5); S/N tests indicates **several more within reach** of Fermi-LAT

Space Telescope

 Clusters of Galaxies interesting targets both for CR and DM searches but no observational evidence for γ-rays so far

UPDATE: (*arXiv:1201.1003*) reporting evidence of extended γray emission in Virgo, Fornax & Coma (but *arXiv:1201.0753* reports only upper limits)

- Individual fits are compatible with the non-observation hypothesis
- Combined Likelihood approach feasible as all clusters should reflect same physical properties
- Details on (optimistic) point-source analysis in *(arXiv:1110.6863)*
- A paper with details on careful modeling of clusters as extended sources considering both CR- and DM-induced γ-ray signals is in the works

Thank you for your Attention!

On behalf the Fermi-LAT Collaboration

Backup Slides

Gamma-ray Space Telescope

Individual Fit Results (500 GeV DM Mass)

6

ermi

Gamma-ray

Stephan Zimmer On behalf the Fermi-LAT Collaboration

Individual Residual Maps in Sigma

Flux Predictions from CR Model

- Injection efficiency depends on mach number of shockwave, higher efficiencies only realized at strong shockwaves outside supercluster regions
- Not excluded by radio data: for FRM can explain morphology, bulk of flux, and some of power law spectra (Miniati et al. 2001, Profumo & Jeltema 2011)
- Radio halos too extended for plain hadronic model, need some CR transport and additional components in violent outer parts, but CR flux bulk comes from center

J-Values for Clusters (no uncertainties included, no substructure assumed)

Cluster	Annhihilation ¹⁾ [10 ¹⁷ GeV ² cm ⁻⁵]	Decay ²⁾ [10 ¹⁸ GeV cm ⁻²]
AWM7	1.4	10.2
Coma	1.7	16.6
Centaurus	2.7	13.7
Fornax	6.8	18.4
M49	4.4	11.1

- 1) Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope, arXiv:1002.2239v4, Ackermann et al. (2010)
- 2) Constraints on Decaying Dark Matter from Fermi Observations of Nearby Galaxies and Clusters, arXiv:1009.5988v2, Jeltema et al. (2010)

