

THE COSMIC DOWNSIZING OF FERMI-DETECTED FLAT SPECTRUM RADIO QUASARS

M. Ajello (SLAC/KIPAC) R. Romani, M. Shaw, C. Dermer, L. Costamante on behalf of the Fermi-LAT collaboration

Paper available as: arXiv:1110.3787

Marco Ajello

THE FSRQ SAMPLE: PROPERTIES

reliminary

- * The sample:
 - * Extremely clean, ~5% incompleteness
 - * Based on the 11month catalog
 - ***** TS >50, |b|>15deg
 - ***** z = [0.1-3.0]
 - ★ Spans >2dex in flux
 - * Spans >4dex in luminosity
- * Very good dynamical range

Table 1. Composition of the $|b| \ge 20$, TS ≥ 50 , $F_{100} \ge 10^{-8}$ ph cm⁻² s⁻¹ sample used in this analysis.

CLASS	# objects
Total	433
FSRQs	186
BL Lacs	157
Pulsars	28
Other ^a	16
Radio Associations ^b	17
Unassociated sources	29

^aIncludes Starburst galaxies, LINERS Narrow line Seyfert 1 objects and Seyfert galaxy candidates.

^b*Fermi* sources with a radio counterpart, but no optical type and redshift measurement.

FERMI'S LUMINOSITY FUNCTION

- * Luminosity Dependent Density Evolution (LDDE) represents the *Fermi* data well
- * It implies:
 - * Strong evolution of FSRQ: factor 100 more FSRQs at z=1.5
 - * A cut-off in the evolution that changes with luminosity
- * The results are robust against in-completeness (e.g. lack of ID/redshifts) problems

REDSHIFT PEAK EVOLUTION

Marco Ajello

THE SEDS OF FSRQS

* Recipe:

- * Take all the FSRQs in the complete sample
- * Extract *Swift*/BAT and *Fermi-LAT* data
- * Correct for source redshift
- * Fit them together

Caveats: Swift data extracted over 2005-2011, Fermi data in 2008-2011 Swift and Fermi might sample two different components (e.g. 55C/EC) 5

CONTRIBUTION OF FSRQS TO EGB

- * Total (e.g. resolved + unresolved) emission from FSRQs
- * No EBL/cascade considered, but unimportant for soft spectra

See other studies by: Stecker&Salomon+96, Pavlidou&Fields+02, Narumoto&TotaniO6,Dermer07, Bhattacharya+09, Inoue&TotaniO9, Fields+10, Makiya+10, Inoue+11, Abazajian+10, Ghirlanda+11, Stecker&Venters11, Malyshev&Hogg11

1. The average bulk Lorentz factor of Fermi FSQR is Γ =15

- 2. FSRQs are only 0.2% of their parent population
- 3. Most of the jets are seen within 5-6 degrees
- 4. The average angle is 2.9 degrees

SUMMARY

- ***** Wealth of results on FSRQs from γ -ray data alone (1 year):
 - The luminosity function shows evidence for 'cosmic downsizing': i.e. more luminous object were more abundant early in the Universe
 - * The average SED shows no strong dependence on either luminosity and redshift
 - * FSRQs make ~20% of the total (including sources) IGRB intensity
 - * FSRQs represent 0.1-0.2% of the parent population and are beamed within 5degrees