

Massimo Fiorucci I.N.F.N. sez. Perugia. Dipartimento di Fisica, Universita di Perugia

- 1) Analysis of variability in a sample of blazars observed at the Perugia Astronomical Observatory (with S. Ciprini, N. Marchili, G. Tosti)
- 2) Phenomenological models of variability and simulation of blazar data that would be obtained with GLAST (with C. Cecchi, F. Marcucci, M. Pepe, G. Tosti)
- 3) Analysis tools for GLAST (with P. Lubrano, G. Tosti)
- classification of variable sources
- identification of faint sources
- noise filtering

- Blazars are characterised by rapid and large variability at all frequencies
- In the last years, many efforts have been spent to understand the physical mechanisms responsible for the variable emission
- However, <u>blazars emit signals that appear to vary</u> <u>chaotically with time</u>.

OJ94 Coll. - http://astro.utu.fi/oj94/

GLAST IDT & LAT Collaboration Meeting, October 22-25, 2002

1) analysis of variability

OJ94 Coll. - http://astro.utu.fi/oj94/

This behavior is expected in two qualitatively different situations:

- In a system consisting of a large number of weakly correlated elements which appear at random and live only a short time.
- The global evolution of a system described by non-linear differential equations which shows deterministic chaos.

Optical variability: chaotic behaviour or correlated signal?

- The Perugia monitoring program started in 1992. We have collected more than 20000 BVRI observations and our sample forms one of the larger set of optical data available.
- We are cooperating with other international teems to improve the sampling for many blazars.
- We can use this large database to <u>study variability with</u> <u>statistical techniques</u>.

The Perugia AIT http://www.ospg.pg.infn.it

- Diameter of the primary mirror D= 40 cm
- Focal ratio f/5
- Newtonian optical configuration
- Equatorial mount
- CCD Camera
- + Johnson-Cousins BVRI filters

Fully automatic Data Acquisition and Reduction.

The best sampled Blazars

Common Name	AR	DEC	z Type	Max[R]Min[R]
S2 0109+22	01 12 05	. <mark>8</mark> +22 44 39	BL	14.82 16.2
3C 66A	02 22 39	.6+43 02 08	0.44 # PQ	13.79 14.9
AO 0235+164	02 38 38	.8+16 36 59	0.94BL	14.98 16.9
4C 47.08	03 03 35	2+47 16 16	6 0.47 BL	15.9 16.
NGC 1275	03 19 48	.1+41 30 42	2 0.017166G	13.47 13.6
1H 0323+022	03 26 14	0+02 25 15	5 0.14 BL	15.73 16.5
1H 0414+009	04 16 53	8+01 04 57	0.28 B L	16.11 16.5
PKS 0422+00	04 24 46	.8+00 36 06	6 0.3 1BL	14.06 15.4
S5 0716+71	07 21 53	.4+71 20 36	6 O.3BL	13.71 14.8
PKS 0735+17	07 38 07	.4+17 42 19	0.42 0 VV	15.42 16.5
1ES 0806+524	08 09 49	.1+52 18 59	0.13 8 L	15.38 15.8
PKS 0829+046	08 31 48	. <mark>9+04 29 39</mark>	0.1 BBL	14.74 15.5
OJ 287	08 54 48	. <mark>9</mark> +20 06 31	0.30 0 VV	14.67 16.2
S4 0954+65	09 58 47	.2+65 33 55	0.36 8 L	15.43 16.4
OM 280	11 50 19	. <mark>2+24 17 5</mark> 4	O.2BL	15.6 16.4
TON 605	12 17 52	. 1+30 07 0 ′	0.1 3 0 V V	14.22 14.6
W Com	12 21 31	.7+28 13 59	0.10BL	13.65 15
3C 273	12 29 06	.7+02 03 09	0.158BPQ	12.71 12.8
3C 279	12 56 11	.105 47 22	0.53612PQ	14.46 15.9
OQ 530	14 19 46	. <mark>6+54 23 1</mark> 5	5 0.15 BL	15.15 15.8
PKS 1424+240	14 27 00	.4+23 48 00	BL	14.13 14.3
MS 1458.8+224	915 01 01	. <mark>9</mark> +22 38 00	6 0.23 BL	15.54 16.1
3C 345	16 42 58	. <mark>8⊢39 48 37</mark>	0.59218PQ	16.02 16.7
MRK 501	16 53 52	. <mark>2+39 45 37</mark>	0.033 b 7L	13.34 13.4
H 1722+119	17 25 04	.4+11 52 16	6 0.01 8 PQ	14.31 14.8
I Zw 187	17 28 18	. <mark>6⊢50 13 10</mark>	0.055B4L	15.54 15.
3C 371	18 06 50	.7+69 49 28	0.05 0 VV	14.23 14.4
1ES 1959+650	19 59 59	. <mark>8⊢65 08 5</mark> 5	5 0.04 BL	14.66 15.1
PKS 2032+107	20 35 22	. <mark>3+10 56 07</mark>	0.60BL	15.01 15.3
BL Lac	22 02 43	. <mark>3</mark> +42 16 40	0.068 165 L	13.51 15.
PKS 2254+074	22 57 17	. <mark>3+07 43 1</mark> 2	2. 0.198L	15.98 16.6
1ES 2344+514	23 47 04	. <mark>8⊢51 42 18</mark>	0.04 8 L	14.82 15.1

11

Power Spectral Density

with: Fast Fourier Transforms Scargle-Lomb Periodogram Schuster Periodogram

Press et al. (1992) Lomb (1976), Scargle (1982) Marple (1987)

13

GLAST IDT & LAT Collaboration Meeting, October 22-25, 2002

1) analysis of variability

white noise

GLAST IDT & LAT Collaboration Meeting, October 22-25, 2002

Auto-Correlation Function

with: Discrete ACF

Edelson & Krolik (1988)

Structure Function (first order)

Simonetti et al. (1985)

NFN PERUGIA

Detrended Fluctuation Analysis

Peng et al. (1995)

- Preliminary results show that the observed variability is truly stochastic and is not caused by deterministic chaos
- Blazar variability seems to be characterised by a power law $PSD \propto f^{-\alpha}$, with the slope within the range $\alpha = 1-2$ (shot or flicker noise)
- The system probably consist of a large number of weakly correlated elements which appear at random, live only a short time and decay

We can simulate the optical variability considering only the phenomenological behavior:

- we select the PSD spectral slope,
- the range of frequencies where the system is selfsimilar,
- then we opportunely compose the PSD array
- and finally we obtain a light-curve (with the Fourier Transform, for example).
- We can also decide to use a typical SED in a reasonable range of energies,
- and/or to include photon noise, other noises, irregular sampling, etc.

GLAST IDT & LAT Collaboration Meeting, October 22-25, 2002

2) simulation of blazar variability

2) simulation of blazar variability

and GLAST ?

 The simulation of variability can be extended towards high energy with the theoretical models.

3) analysis tools for GLAST

- Analysis of variability. Why?
 - to classify variable sources (together with the Likelihood tool),
 - to search for periodic emission from a source (Pulsars)
 - to obtain a non-parametric characterization of a burst (GRBs)
 - to discriminate faint variable sources against the background noise (?)

- Periodic (or quasi-periodic) sources:
 - Pulsars
 - Binary Systems (?)
- Erratic sources, with variability similar to pink (or red) noise (PSD ∝ f^{-α}):
 - GRB
 - microquasars (?)
 - Blazars and AGN

Radio: α ≈ 2 (Hufnagel & Bregman, 1992)

Optical: *α* ≈ **1-2** (Fiorucci et al., 1999)

X: α ≈ 1 - 2 (Lawrance & Papadakis, 1993)

 $\alpha \approx 2 - 3$ blazars (Kataoka et al., 2001)

Flux observed from the (i,j) position F(i,j) =

 $\Sigma_h \Sigma_k PSF(i+h,j+k) S(i+h,j+k)$

where:

PSF: Point Spread Function computed in the selected energy range and space bin (and the inclination angle during the orbit)

S: Gamma Ray flux observed in the selected energy range and in the selected space bin

h, k: incremental indices used to consider the adjacent pixels

Human Eyes are able to distinguish hidden things in motion:

integration + spectral analysis + filtering

We'd like to reproduce this capability!

3) analysis tools: identification of faint sources

3) analysis tools: identification of faint sources

3) analysis tools: noise filtering

Simulated light curve

GLAST IDT & LAT Collaboration Meeting, October 22-25, 2002

3) analysis tools: noise filtering

Variable source + background noise

3) analysis tools: noise filtering

Conclusions

- We must investigate all the opportunities that GLAST will offer in the time domain.
- Blazars seem to be characterized by a typical PSD and probably we can use this feature for an indirect classification.
- It is possible to simulate AGN variability starting from a phenomenological model.
- Work in progress:
 - to simulate "real observations" and to verify the preliminary results with MonteCarlo techniques;
 - to improve the "traditional" likelihood analysis with the inclusion of temporal analysis.

References

- Edelson R. A., Krolik J. H., 1988, ApJ 333, 646
- Fiorucci M., Tosti G., Luciani M., 1999, MSAlt 70, 223
- Grassberger P., Procaccia I., 1983, Phys Rev Lett 50, 346
- Hufnagel & Bregman, 1992, ApJ 386, 473
- Kataoka J., et al., 2001, ApJ 560, 659
- Lomb N. R., 1976, Ap. Space Sci. 39, 447
- Lawrance & Papadakis, 1993, ApJ 414, 85
- Marple S. L., 1987, "Digital Spectral Analysis", Prentice-Hall Inc.
- Peng C. K., et al., 1995, CHAOS 5, 82
- Press W. H., et al., 1992, "Numerical Recipes", Cambridge Univ. Press
- Scargle J. D., 1982, ApJ 263, 835
- Simonetti J. H., Cordes J. M., Heeschen D. S., 1985, ApJ 296, 46