Fermi Science Support Center

FSSC Science Tools

Using the LAT Catalog for Analysis

Science Support Center

First LAT Catalog (1FGL)

- Last updated 4 February 2010
 - Next catalog scheduled for Spring 2011
- Available from FSSC at:

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/1yr_catalog/

- Full Catalog in FITS format
- Preprint of LAT Catalog papaer and Catalog column descriptions
- XML file containing output models for each source
- DS9 region files (point or ellipse)
- Change log for content updates
- Also available as a BROWSE table:
 - Allows for queries/searches based on Catalog content

Science Support Center

1FGL Catalog

Cuts used for analysis

- 100 MeV 100 GeV
- Integrated data for 4 August 2008 4 July 2009 (11 months)
- Rocking angle < 43° (more recent data requires a looser cut)
- Excluded 20 min around GRB 080916C and 300 sec around GRB 090510

Catalog includes

- 1451 sources with Test Statistic ≥ 25
- Positions in celestial and galactic, 68% and 95% confidence error ellipses
- Total flux (>1 GeV), source significance
- Average flux in 5 energy bands (.1-.3-1-3-10-100 GeV) with significance per band
- Overall spectral index, pivot energy, curvature index
- Flux per month, variability index
- Associations with known sources and other gamma-ray catalogs
- Error flags to indicate possible concerns with selected sources

Science Support Center

Source Identification

- Three types of sources in the catalog
 - Identified indicated by an uppercase class type (e.g. PSR)
 - Require periodic signature, correlated variability, or correlated spatial morphology
 - Associated indicated by a lowercase class type (e.g. bzq)
 - >80% probability of being associated with the indicated source
 - Associated sources are considered "unidentified," as they do not meet the requirements above
 - Unassociated class type left empty

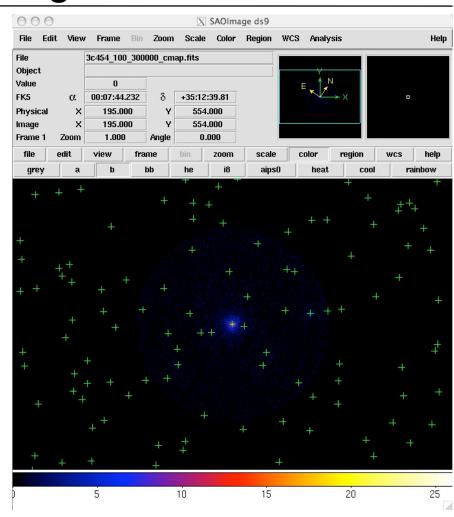
Science Support Center

Cautioned sources

- Certain source names end with a "c"
 - "c" indicates you should treat these sources carefully
 - "c" sources are **unidentified** sources flagged for one of three reasons
 - They are located within the Galactic ridge (|I|<60°, |b|<1°)
 - They are coincident with peaks in Galactic gas maps
 - They are located in a region with many LAT sources (overlapping PSFs)
- Galactic ridge is a difficult region
 - Many sources, overlapping PSFs
 - Low source to background ratio (<50% below 3 GeV)
 - Large uncertainties in Galactic diffuse model in this region

Science Support Center

Using the Catalog for Data Analysis


- Useful to select specific sources for further study
 - More or less data than in the catalog
 - Compare output with different spectral models
 - Add fainter sources to reduce residuals
- Very useful to define an initial point-source model
 - Fitted parameters from the catalog can be an initial guess for future fitting, or held fixed for investigation of other sources
 - XML model results from catalog analysis are good model inputs
 - Use a text editor to create the XML, or
 - Use modeleditor gui to generate the XML
 - Python script available to generate initial model file from "User Contributed Tools" page at: http://fermi.gsfc.nasa.gov/ssc/data/analysis/user/

Science Support Center

Find sources in your region

- Plot counts map from gtbin
- Overlay catalog region file
- Find significant sources in your ROI
 - ► These should be input into your source model
 - For long integrations you need to include fainter sources

Science Support Center

Source Model Structure

```
K?xml version="1.0" ?>
        <source_library title="source library">
                                 Diffuse components may be scaled
        <!-- Diffuse Sources -->
                                 by a constant or power law
        <source name="GAL_v02" type="DiffuseSource">
            ⟨spectrum type="PowerLaw"⟩ ←
   Leave -
             → Aparameter free="1" max="10" min="0" name="Prefactor"
           scale="1" value="1.22"/>
   parameters
               free (1) to
               by likelihood
           </spatialModel>
        </sounce>
        <source name="EG_v02" type="DiffuseSource">
            <spectrum type="FileFunction" file="/net/users/ddavis/lat//bkg/isotropic_iem_v02.txt">
               </spectrum>
            <spatialModel type="ConstantValue">
               </spatialModel>
        Scale is used to interpret results
        <!-- Target Sources -->
        <source name="L3c454" type="PointSource">
Change
        ➤ <spectrum type="PowerLaw2">
spectral
           ⟨parameter free="1" max="5" min="1" name="Index" scale="−1" value="2.507" />
models for
           different
           <p
          source types
          <spatialModel type="SkyDirFunction">
           </spatialModel>
```

Science Support Center

Available Models

- A listing of all available models and their functional forms can be found at:
 - http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html
 - Available models include:

Constant Gaussian

Power Law Log Parabola

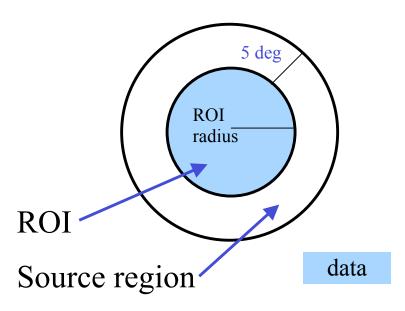
Broken Power Law Exponential Cutoff

BPL with Exp Cutoff PL with Superexponential Cutoff

Band Function User-defined Function

— Also several spatial models are available:

Constant Value Sky Direction Function (point only)

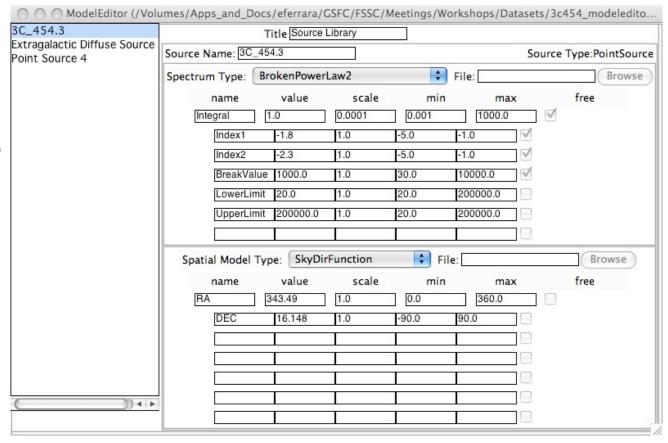

Spatial Map (extended sources) Map Cube Function (usually diffuse)

Science Support Center

Building the Source Model

- Model should cover both the ROI and the source region
 - ROI includes the data you have selected
 - Primary source, and nearby sources should have appropriate parameters left free for the fit
 - Source region is the modeled area, and includes sources outside the data region
 - It is recommended that you set parameters for sources outside your ROI to the values in the catalog since no data is available for a proper fit

Science Support Center


Using Modeleditor

Enter each source separately and provide initial

guesses

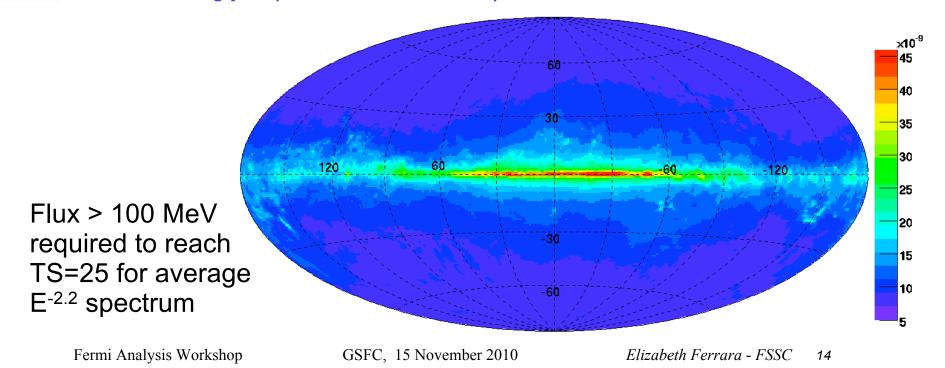
Save when all needed sources have been input.

Can be time consuming

Science Support Center

Using Python

- User-contributed tool "make1FGLxml"
 - Extracts data from 1FGL catalog file and auto-generates XML
 - Automatically leaves parameters for sources near the center of the field free, and fixes those for sources farther away
 - ► ALL 1FGL sources in the ROI, plus those up to 5 deg outside the ROI
 - Best to hand-tune model after generation, to ensure content is as desired
- Validate source model by loading it into modeleditor
 - Works for any method of generating a source model
 - ▶ Will generate errors if the format is incorrect for use with the Science Tools

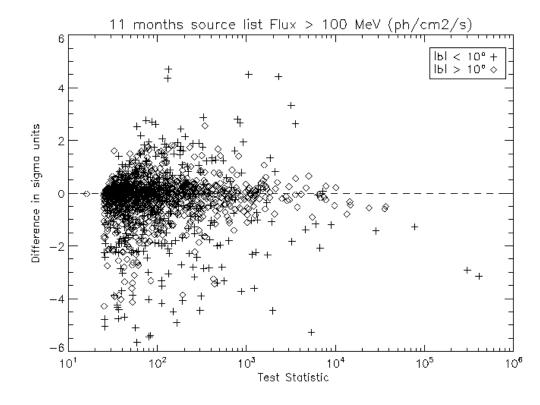

Backup Slides

Science Support Center

Sensitivity

- Factor of 10 difference depending on location
 - Structure is mostly due to Galactic diffuse background
 - At high latitudes (|b|>30), sensitivity is below 10-8 ph/cm²/s
 - Strongly dependent on source spectral index

Science Support Center

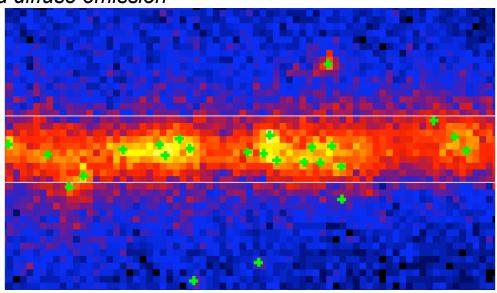


Diffuse Emission Uncertainties

- Compared output using two different diffuse models
 - With good statistics, 10% of the background can still be significant

In the Galactic plane, dispersion due to diffuse model is 1.8 σ

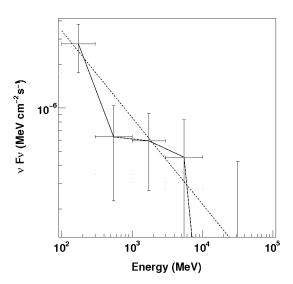
Outside the plane, dispersion is 0.7σ


Science Support Center

Source Confusion

Overlapping PSFs

- Spectrally weighted PSF is much larger for soft sources
- Outside the plane, average separation is ~3°
 - Much larger than r₆₈ (0.8°) at 1 GeV
- In the plane, sources clearly not separated (below)
 - Possibly unmodeled diffuse emission
- 15° region of the Galactic Ridge
- 1 100 GeV
- Crosses are sources
- Pixel size = 0.2°
- Strong galactic diffuse component introduces bias against soft sources



Science Support Center

Finding Interesting Sources

- Source variability
 - Light curves and variability index for each source (available in Browse)
 - Variability index is χ^2 against constant hypothesis (~250 sources)
 - Pulsars are stable within 3%
 - Bright blazars are very clearly variable

Spectral shape

- 5-band initial spectrum for each source
 - Curvature index is χ^2 against power-law spectral shape
 - Typical spectrum is broken, so power-law estimate is high

Upper limits are given for bands or intervals where the source is not significant

Time (days since 2008 January 1st)

Science Support Center

Finding More Interesting Sources

Source Associations

- Positional associations with other gamma-ray catalogs
 - 3rd EGRET, Revised EGR, and First AGILE catalogs
- Probabilistic associations with likely source catalogs
 - Pulsars, SNRs, PWNe, blazars, other AGN, etc.
- Find your favorite source!

Be aware...

- For studies at low Galactic latitudes and toward prominent local clouds, be aware that some 1FGL sources may be unresolved diffuse emission
- Whether or not to include such sources in the source model is a case-by-case decision