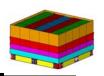


GLAST Large Area Telescope:

Collaboration Meeting September 28-30, 2004


AntiCoincidence Detector: From Rome 2003 to SLAC 2004

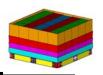
David J. Thompson, Subsystem Manager Thomas E. Johnson, Instrument Manager Alex A. Moiseev, Lead Scientist

NASA Goddard Space Flight Center

Anti-Coincidence Detector

- One year ago where we were
- Top level tasks for this year. ACD people
- ACD system structure major components
 - Detectors
 - Electronics
 - PMT
 - Mechanical structure
 - GSE
 - ACD performance analysis
 - Conclusion

Tasks for this year. ACD people

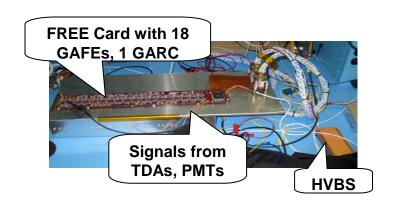


We have solved numerous tasks during last years. For this year we have the only task – build flight ACD

One year ago - where we were

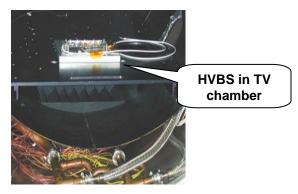
We were in Rome: Basic ACD design was finished

GAFE – final design has not chosen yet

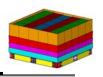

EGSE – not received yet

HVBS – designed, some parts not approved yet

Mechanical structure – some panels built

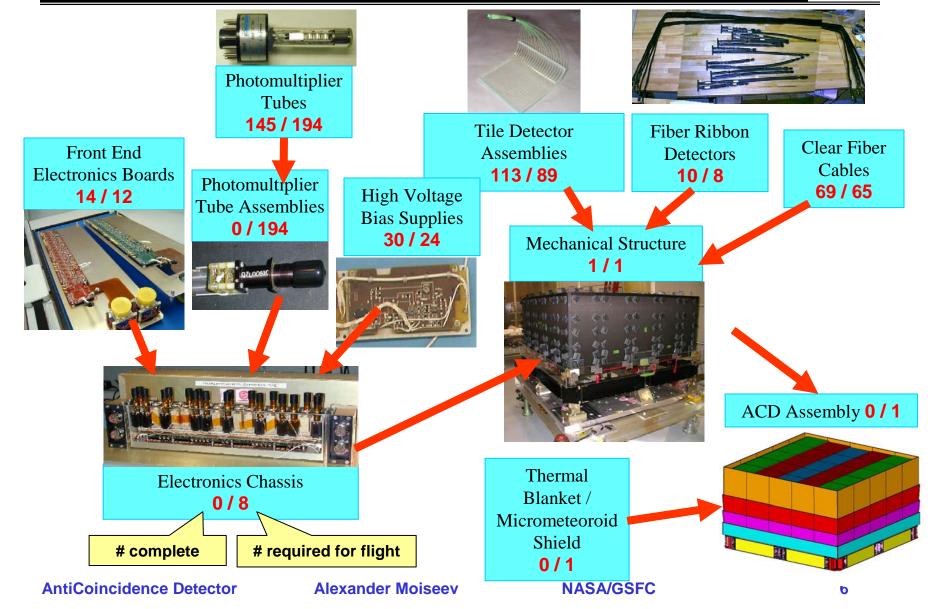

Tile Detector Assembly (TDA) - prototyped

PMT – ready for flight assembly

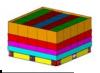


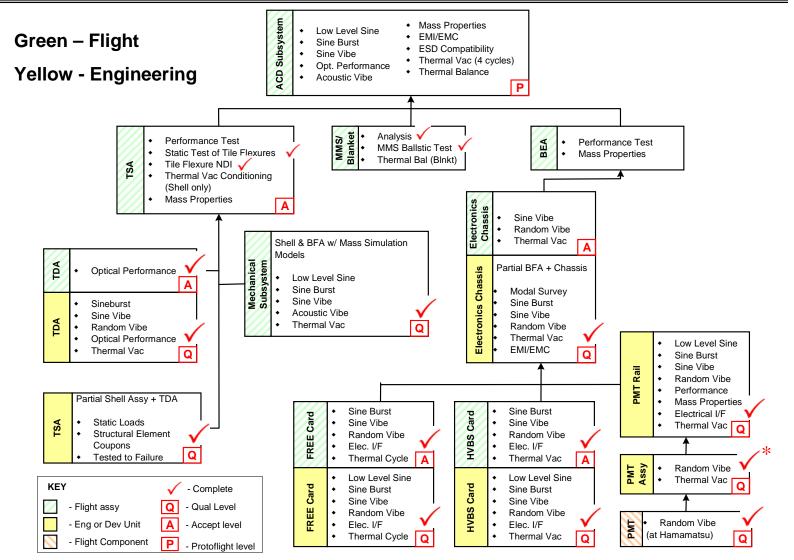
Alexander Moiseev

Where we are now?

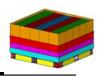

Now we are at SLAC and one more year closer to 2007

- Design finished in details
- All fabrication documentation is in place
- Most parts are ready for the integration to ACD
- Numerous problems, which are common for hardware fabrication phase, are solved (tens and tens of EO's, PR's, PFR's); some remaining being solved


ACD Assembly Flow and Build Status

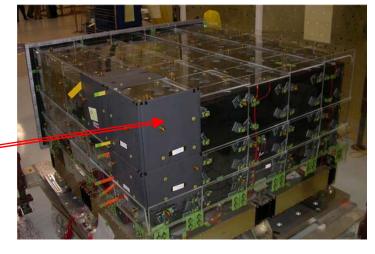


ACD Environmental Test Flow



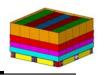
ACD

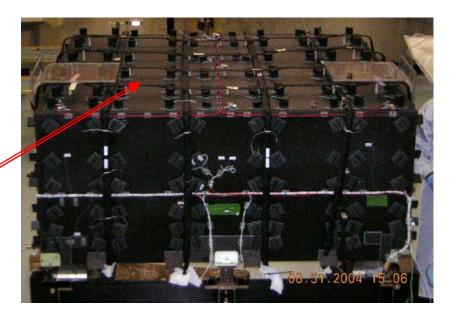
Detectors - TDA's



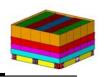
ACD contains 89 tile detectors (TDA's) and 8 scintillating fiber ribbons

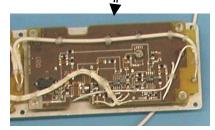
- **TDA:** 17 different designs depending on their place in ACD. There are spare tiles for every type
- every TDA except bottom row, has its own clear fiber cable (light guide) to connect detector with PMT
- every TDA has passed acceptance test which includes "tomography" to map light yield uniformity over the tile area
- light yield from every TDA (created by cosmic muons) was measured with assigned clear fiber cable to determine light attenuation in cable


- 113 TDA's (flight and spare) are made and tested; ready for integration in


Detectors – fiber ribbons

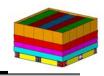
- There are 8 scintillating fiber ribbons in ACD to seal the gaps between TDA's. It was shown that without ribbons ACD would not achieve required charged particle efficiency
- There are 4 different ribbon configuration of that 8
- All ribbons (plus spares) are built and tested, yielding ~ 4 photoelectrons from muon passing in the middle of ribbon

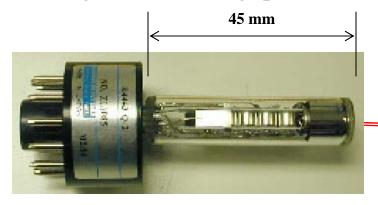




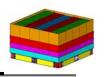
Electronics

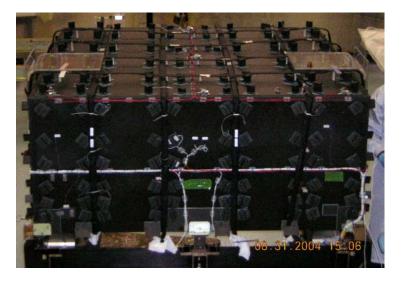
- There are 12 Front End Electronics Boards (FREE) in ACD + 2 spares
- Each board can support up to 18 channels. It contains front end analog (GAFE) ASIC per each channel and one digital (GARC) ASIC
- Each FREE has two High Voltage Uprits (HVBS), main and redundant, to power PMT's (24 to fly + 6 spares)
- Each FREE will be integrated in chassis with PMT's
- All FREE boards, including HVBS, are made, tested and ready for integration in ACD



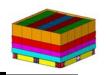


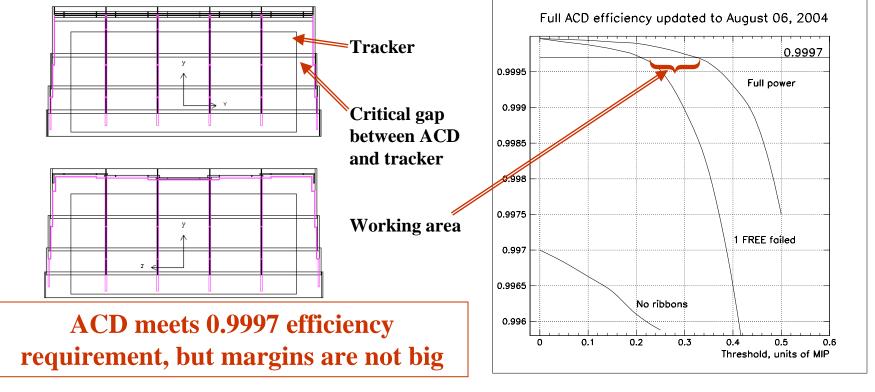
PMT


- There are 194 PMT's in ACD
- We use Hamamatsu R4443 tubes, which is a ruggedized version of popular R647 tube
- Each tube has its own low current (<2 μA) resistor divider, big challenge to build in such limited space
- Currently this is a biggest problem in ACD we are modifying PMT housing to reduce thermal stress on PMT at low temperature. The new design is now being qualified

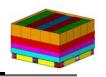

Mechanical structure

Built, fully tested, equipped with accelerometers and thermistors and ready to host ACD detectors

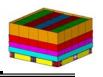




ACD Performance analysis

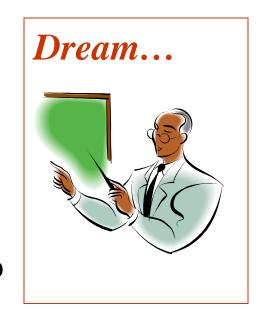


- Now we have real and exact ACD geometry
- Now we have all flight detectors performance measured
- Following the concept presented in Rome, all this was put in ACD simulations to determine single charged relativistic particles detection efficiency


How to get data out from ACD: EGSE

- ACD hardware is being built have to test the data coming out of it
- It was a long waiting time to receive EGSE test stand!
- G3 test script progress:
- Most scripts have been written and tested
 - EMI Test Scripts have been defined
 - Still have an issue with event rates, including some crashes of the system issues are being worked.

Conclusion


Flight ACD integration has started

Most problems solved

 Remaining issues: PMT housing and data taking (EGSE)

 And, of course, very heavy struggle to keep schedule and budget