The Broken Power Sequence of Radio-Loud AGN + Collective Evidence for Inverse Compton emission from External Photons in High-Power Blazars

E. Meyer¹, M. Georganopoulos², G. Fossati¹, M. Lister³

Fermy meets Jansky St. Michael's, MD 10 November 2011

¹ Rice University, Houston, TX
² UMBC, Baltimore, MD
³ Purdue University, Lafayette, IN

 \rightarrow What can we learn from studying populations?

The Blazar View of the Relativistic Jet

The Broken Power Sequence in RL AGN

Core Dominance \rightarrow Angle

Meyer et al., 2011

The Broken Power Sequence in RL AGN

Fermi/Jansky, Nov 2011

5/14

The Broken Blazar Sequence

> Weak Jets consistent with velocity gradients in the radiating plasma

(spine-sheath – Ghisellini 2005, Chiaberge 2000 and/or decelerating flow – Georganopoulos 2003)

- > Strong Jets drop quickly in Luminosity (1:4)
- > many BL LACS in the strong jet branch (more on this)
- > ISPs more misaligned versions of HSP?
 - explains many recent findings "at odds" with the sequence:
 - Caccianiga & March[~]a (2004): high R, low Lum., low peak
- > Confusion at low synchrotron peaks/overlap with RG
- > There is not a continuous sequence

The Broken Power Sequence in RL AGN

 $L_{kin}, \theta, \dots m?$

The Broken Power Sequence

The Broken Power Sequence

Log Jet Kinetic Power [ergs s⁻¹]

9/14

The Broken Power Sequence

Log Jet Kinetic Power [ergs s⁻¹]

10/14

1:4 Δ frequency: Δ Luminosity $\delta/\delta_0 = v_{\text{peak}}/v_0$

About those BL Lacs...

(Georganopoulos & Marscher 1998)

What can we learn from Fermi?

What can we learn from Fermi?

SSC versus EC

SSC – upscatter synchrotron photons

-IC peak is a "copy" of synch

-beaming pattern is the same:

 $L\sim \delta^{\scriptscriptstyle 3\!+\!\alpha}$ synchrotron peak or IC peak

EC – upscatter photons from outside the jet (BLR, molecular torus, accretion disk?)

-beaming pattern is different:

$$\begin{split} L \sim \delta^{\text{3+a}} \text{ synchrotron peak} \\ L \sim \delta^{\text{5+a}} \text{ IC peak} \\ \text{(For radio, } L_{\text{core}}/L_{\text{ext}} \thicksim L \sim \delta^{\text{3+a}}, \, \alpha \sim 0.2 \text{)} \end{split}$$

The Broken Power Sequence in RL AGN

EC in powerful jets?

Fermi/Jansky, Nov 2011

16/14

EC in powerful jets?

R_{CE}[1.4 GHz]

Conclusions/Key Observations

From the Blazar (synchrotron) Envelope:

- + No High-Luminosity, High-Peak sources
- + Suggestion of Two populations: "weak" / "strong"
- + Jet Power important, but not fundamental: spin, M_{BH} , or accretion rate?
- + ISP sources are a key diagnostic population
- + spectral types are not clearly associated with a pop., this may be explained as jets overtaking lines
- + no high-synchrotron-peak radio galaxies

New Orientation Scheme:

- + Observations consistent with a change in accretion mode at a critical rate of ~ 10⁻² Eddington mass rate, *linked to a divide in jet SED characteristics.*
- + The sequence remains in 'broken' form, power increasing along the theoretically predicted line

From new Fermi analysis

Next Steps

- Complete the high-energy characterization of the IC spectra for the 3-year data set, with additional data from TeV, X-ray
- Expand the sample to include NLSy1
- Look at VLBI data: jet speeds, morphologies
- Expand the sample (small)
- Apply to evolution studies, EGRB

(this slide intentionally left blank)

Measuring the Power of Relativistic Jets

How does Beaming affect the SED?

Fermi/Jansky, Nov 2011

25/14

The Broken Power Sequence in RL AGN

Simple/Complex are co-spatial as radio galaxies As a theoretical source is aligned: + fast component of complex jets is revealed → dramatically higher peak frequencies

+ simple jets follow 1:4 rule

The updated theoretical sequence (Ghisellini 2008) predicts blue quasars, low power FSRQ, but is still a continuous sequence \rightarrow

← Alternative: Spin Paradigm Rapidly retrograde-spinning black holes able to extract more energy, forming powerful FR II, spin down to moderately powerful FR I (Garofalo 2010)

Verified Simple/Complex population divide would support the spin-based unification scheme Fermi/J

28/14

1. Fit the average synchrotron spectrum

All sources from every flux-limited blazar sample =~4000 candidates

NED + SIMBAD, literature search =~ 1700

Fitted with phenomenological SED,hand selection = 737 sources with accurate

V_{peak}, L_{peak}

CANNOT use simple ratios for determining peak

