The (sub-) mm and γ-rays connection in blazars

J. León-Tavares Metsähovi Radio Observatory (Finland)

In collaboration with: E. Valtaoja, M. Tornikoski, A. Lähteenmäki, E. Nieppola

2007 (

2008.0

2000 0

7 1 1 1 5

2010 5

Planck

- launched in August 2009
- all-sky survey in 6 months

9 months catalog of compact sources
(ERCSC) at 9 frequencies:
30, 44, 70, 100, 143,
217, 353, 545, 860 GHz

Planck Early Results 15: Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

Planck Collaboration: J. Aatrokoski¹, P. A. R. Ade⁸², N. Aghanim⁵³, H. D. Aller⁴, M. F. Aller⁴, E. Angelakis⁷⁵, M. Arnaud⁶⁹, M. Ashdown^{66,7}, J. Aumont⁵³, C. Baccigalupi⁸⁰, A. Balbi³³, A. J. Banday^{87,11,74}, R. B. Barreiro⁶⁰, J. G. Bartlett^{6,64}, E. Battaner⁸⁹, K. Benabed⁵⁴, A. Benoît⁵²,

A&A accepted, arXiv:1101.2047

planck

Observatories involved: APEX, ATCA, Effelsberg, IRAM, Medicina, Metsahovi, MRO, OVRO, RATAN, VLA, KVA, Xinglong, SWIFT, Fermi/LAT

Simultaneous *Planck*, *Swift*, and *Fermi* observations of X-ray and γ -ray selected blazars

P. Giommi^{2,3}, G. Polenta^{2,23}, A. Lähteenmäki^{1,19}, D. J. Thompson⁵, M. Capalbi², S. Cutini², D. Gasparrini², J. González-Nuevo⁴², J. León-Tavares¹, M. López-Caniego³², M. N. Mazziotta³³, C. Monte^{14,33}, M. Perri², S. Rainò^{14,33}, G. Tosti^{35,15}, A. Tramacere²⁸, F. Verrecchia²,

A&A accepted, arXiv:1108.1114

Planck Early Results 15: Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

Planck Collaboration: J. Aatrokoski¹, P. A. R. Ade⁸², N. Aghanim⁵³, H. D. Aller⁴, M. F. Aller⁴, E. Angelakis⁷⁵, M. Arnaud⁶⁹, M. Ashdown^{66,7}, J. Aumont⁵³, C. Baccigalupi⁸⁰, A. Balbi³³, A. J. Banday^{87,11,74}, R. B. Barreiro⁶⁰, J. G. Bartlett^{6,64}, E. Battaner⁸⁹, K. Benabed⁵⁴, A. Benoît⁵², A&A accepted, arXiv:1101.2047

planck

A flat α_{HF} has two possible explanations:

- either the total HF spectra are defined by several underlying components or,
- the energy spectrum of the electron population is much harder than generally assumed $(s \approx 1.5)$

Planck collaboration et al. 2011, A&A, arXiv:1101.2047

Simultaneous *Planck*, *Swift*, and *Fermi* observations of X-ray and γ -ray selected blazars

P. Giommi^{2,3}, G. Polenta^{2,23}, A. Lähteenmäki^{1,19}, D. J. Thompson⁵, M. Capalbi², S. Cutini², D. Gasparrini², J. González-Nuevo⁴², J. León-Tavares¹, M. López-Caniego³², M. N. Mazziotta³³, C. Monte^{14,33}, M. Perri², S. Rainò^{14,33}, G. Tosti^{35,15}, A. Tramacere²⁸, F. Verrecchia²,

A&A accepted, arXiv:1108.1114

• Simple SSC models cannot explain the SED of many blazars

• No obvious correlation of the type predicted by the blazar-sequence was found.

Giommi et al. 2011, A&A, arXiv:1108.1114

mm and y-ray connection

• From the Metsahovi QSO monitoring program, we select the 45 best sampled light curves.

• We decompose the 37 GHz Metsahovi light curves into individual exponential flares as in Valtaoja et al. (1999)

•Each of the individual outburst corresponds to the ejection of a new component into the jet (Savolainen et al. 2002).

León-Tavares, Valtaoja, Tornikoski et al. 2011,A&A,532,146

mm and y-ray flares

León-Tavares, Valtaoja, Tornikoski et al. 2011,A&A,532,146

mm and y-ray flares

León-Tavares, Valtaoja, Tornikoski et al. 2011, A&A, 532, 146

mm and y-ray flares

León-Tavares, Valtaoja, Tornikoski et al. 2011,A&A,532,146

mm-γ-rays delay

The average delay from a mm-flare onset (Smax/e) to the peak of the most intense γ-rays is,

 $t_0^{mm} - t_{peak}^{LAT}$ ~ -70 days

in the source frame,

$$t_0^{mm} - t_{peak}^{LAT} \sim -30 \text{ days}$$

León-Tavares, Valtaoja, Tornikoski et al. 2011, A&A, 532, 146

The location of the γ-rays zone

We convert the observed delay into linear distances by

$$\Delta r = \frac{\beta_{app}c(t_0^{mm} - t_{peak}^{LAT})}{\sin\theta \ (1+z)}$$

$$< R_{\gamma} > \sim 7 \text{ pc}$$

Well agreement with the average distance derived by Pushkarev et al. (2010)

 $OJ 287 : R_{\gamma} > 14 \text{ pc}$ (Agudo et al. 2010)

 $3C 279 :: R_{\gamma} \sim 10^5 R_G$ (Fermi-LAT collaboration. 2010)

source	alias	phase	\mathbf{t}_{0}^{mm} - \mathbf{t}_{peak}^{LAT}	distance
			[days]	[pc]
0048-097		0.8	-58.90	
0059 + 581		1.1	-79.32	6.44
0106 + 013		0.4	-63.00	8.94
0109 + 224	$S2 \ 0109 + 22$	0.6	-28.54	
0133 + 476		1.1	-62.15	8.36
0212 + 735		1.1	-88.33	1.44
0218 + 357		0.9	-74.68	
0219 + 428	3C 66	0.9	-73.08	
0235 + 164		0.6	-29.03	3.60
0316 + 413	3C 84	0.6	-37.50	0.03
0336-019	CTA 026	0.8	-55.96	10.18
0420-014		0.5	-33.08	3.22
0440-003	NRAO 190	0.3	16.36	
0507 + 179		1.1	-76.11	
0528 + 134		0.6	-34.29	6.45
0736 + 017		1.4	-104.29	10.50
0754 + 100		0.6	-44.45	3.54
0827 + 243	OJ 248	1.6	-143.26	20.05
0851 + 202	OJ 287	0.1	68.44	11.60
0917 + 449		0.5	-30.59	
1055 + 018		0.7	-63.45	3.79
1156 + 295	4C 29.45	1.2	-81.55	28.22
1219 + 285	ON 231	1.5	-132.64	
1222 + 216	PKS1222+21	1.2	-125.24	17.33
1226 + 023	3C 273	1.3	-207.59	35.13
1253-055	3C 279	0.8	-50.11	13.46

León-Tavares, Valtaoja, Tornikoski et al. 2011,A&A,532,146

The y-ray emission site

Summary I

The strongest γ -ray flares occur after the mm flare onset and are produced at $\langle R_{\nu} \rangle = 7$ pc from the radio-core

The source of seed photons could be either the *jet itself* (SSC fails to reproduce the observed γ-rays, Lindfors et al. 2006) or the *dusty torus* (few detections, Turler et al. 2006, Malmrose et al. 2011).

Soft-photon field from BLR unlikely...?

is Jet Influencing BLR?

The Telescopes

٩

3C 390.3

Optical monitoring 1992- 2007 (*Shapovalova et al.* 2001;2010)

Radio monitoring 1994 – 2008

Very Long Baseline Array 11 ± 1 telescopes

3C 120

Optical monitoring 2002 – 2008 (Doroshenko et al. 2009)

> Radio monitoring 2001 – 2008

The case of 3C 390.3 (FR II)

Linear fits to component separations yield epochs of ejection from the core **D** and passages through the stationary region **S1**

Arshakian, León-Tavares, Lobanov et al. 2010, MNRAS, 401,1231

Is Jet Influencing BLR?

Arshakian, León-Tavares, Lobanov et al. 2010, MNRAS, 401,1231

The case of 3C 120 (FR I)

León-Tavares, Lobanov, Chavushyan et al. 2010, ApJ, 715, 355

Is Jet Influencing BLR?

León-Tavares, Lobanov, Chavushyan et al. 2010, ApJ, 715, 355

Is Jet Influencing BLR?

León-Tavares, Lobanov, Chavushyan et al. 2010, ApJ, 715, 355

The source of variable optical-continuum

is Jet Influencing BLR?

The *flaring* component of the *optical-continuum* in 3C 390.3 and 3C 120 is associated with the stationary region located *in the jet*.

Since the strength of H β and continuum emission is correlated in 3C 390.3 and 3C 120 then a significant amount of **broad-line emission** is **driven** by continuum radiation from the **jet**.

✤ Thus, BLR is complex and NOT completely virialized.

Arshakian, León-Tavares, Lobanov et al. 2010, MNRAS, 401,1231 León-Tavares, Lobanov, Chavushyan et al. 2010, *ApJ*,715,355

Implications of an outflowing BLR

✿ AGN models: BLR is complex and may have other components (e.g inflows, outlfows).

BH mass: estimates using reverberation mapping relations (assume BLR is virialized).

γ-rays: Outflowing BLR may serve as a source of seed photons for inverse Compton scattering? (Leon-Tavares et al. 2011, A&A, 532, 146)

The Y-ray emission site

Work in progress: Spectroscopic monitoring

Monitoring a sample of bright gamma-ray blazars with prominent broad-line emission

Summary II

The strongest γ -ray flares occur after the mm flare onset and are produced at $\langle R_{\gamma} \rangle = 7$ pc from the radio-core

The source of seed photons could be either the jet itself, dusty torus or....

An outflowing BLR might be an alternative source of BLR seed photons to produce γ-rays, even at distances of several parsecs from the BH.