VLBI associations of Fermi sources

Leonid Petrov Astrogeo Center, USA

Yuri Y. Kovalev Astro Space Center, Lebedev Physical Institute, Russia

Populations of γ -ray and compact radio sources: what is common?

VLBI provides us insight on emission from parsec-scales.

γ -ray dataset:	Fermi 2FGL catalogue
VLBI datasets:	positions and images from surveys.

From VLBI observations we can get

- Positions with sub-mas accuracy;
- maps with parsec-scale resolution;
- polarization properties.

Scope of this talk: data from absolute astrometry surveys.

Major geodesy/absolute astrometry programs

	Dur (h)	С	X/S	Х	K
IVS*	115,000		946 (1060)		
VCS	504		3497 (3800)	3516 (3800)	
RDV*	3,024		1045 (1073)	1043 (1073)	
LCS*	216			845 (1014)	
V2M*	338			1162 (1621)	
NPCS	72		177 (521)	133 (521)	
OBRS*	48		115 (115)		
KQ	288				329 (340)
VGAPS	72				384 (543)
EGAPS	48				178 (437)
BESSEL	155			354 (1535)	
VIPS	176	857 (858)			
VIPS+	48	193 (193)			
FAPS*	72			279 (283)	
Total		1167 (1171)	4150 (4904)	5751 (8193)	817 (1225)

* — ongoing.

the number of **detected** (observed) sources.

Grand total: 6547 (9211) sources.

Statistics are computed on 2011.11.01

The catalogues and $\sim 30,000$ images are available at http://astrogeo.org/rfc

Fermi/VLBI association

Preliminary VLBI/Fermi associations: sources that are within 2σ of Err_{maj}.

Zone	Fermi	VLBI	share
$\delta > -30^{\circ}, b > 10^{\circ}$	1009	648	64%
$\delta < -30^{\circ}, b > 10^{\circ}$	308	128	42%
all sky	1872	880	47%

As a rule of thumb, 1/2 of Fermi sources from 2FGL have been observed with VLBI.

Can physically unrelated Fermi and VLBI sources be associated by chance?

How accurate are 2FGL Fermi position errors?

In total, 880 sources (47% of 2GFL) were used.

Conclusion: Fermi position errors are **overestimated by 67%**.

Fermi position errors

2FGL positions were scaled by a factor of 0.60

The 2FGL semi-major position error axes 50% objects < 1'.780% objects < 2'.795% objects < 3'.5

Rotation angles from differences VLBI–Fermi

R_x	$3''.1 \pm 5''.8$
R_y	$7''.9 \pm 5''.6$
$\ddot{R_z}$	$12''.1 \pm 4''.1$

Slide 6(15)

Completeness of the cumulative VLBI catalogue at $\delta > -30^{\circ}$

The completeness of the catalogue at correlated flux density 180 mJy is 95%. $N = 311 \cdot 10^{-1.236} \log S$ where S is in Jansky Using this source count and assuming

log N/log S dependence can be extrapolated down to 1 mJy;
Source distribution is isotropic.

We can compute the probability to detect a VLBI source in an area of a given radius:

R	1 mJy	5 mJy	10 mJy	20 mJy	50 mJy	100 mJy
4 ′	0.418	0.073	0.032	0.014	0.004	0.002

The probability grows quadratically with the growth of the search area.

The probability to find an unrelated VLBI source as a function of Fermi semi-major position error, and X-band correlated flux density:

Err	1 mJy	2 mJy	5 mJy	10 mJy	20 mJy	50 mJy	100 mJy
1'.7	0.1638	0.0774	0.0266	0.0116	0.0050	0.0016	0.0007
2'.6	0.3142	0.1620	0.0601	0.0270	0.0118	0.0038	0.0016
3'.5	0.4536	0.2623	0.1039	0.0473	0.0208	0.0069	0.0029
10'	0.8714	0.7437	0.4862	0.2883	0.1479	0.0535	0.0236

Final VLBI/Fermi associations with identification significance 99%:

- 1. The probability that the arc-length VLBI– γ is due to random errors > 0.01
- 2. The probability of association with an unrelated source < 0.01

Zone	Fermi	VLBI	share
$\delta > -30^{\circ}, b > 10^{\circ}$	1009	563	56%
$\delta < -30^{\circ}, b > 10^{\circ}$	305	109	34%
$ b < 10^{\circ}$	554	75	14%
all sky	1872	745	40%

There are 35 outliers: Arc < 15', P(VLBI- γ) < 0.01

For instance,

J1041+0610F(8.6 GHz)= 1.174 Jy, Arc: 9'.4J1127-1857F(8.6 GHz)= 1.407 Jy, Arc: 6'.1J1635+3808F(8.6 GHz)= 1.954 Jy, Arc: 2'.2

Are there weak (F < 150 mJy) VLBI associations?

We ran a dedicated VLBA+GBT experiment in 2009/2010 at 8 GHz.

169 targets associated with flat-spectrum sources, not previously observed with VLBI.

Targets are 1FGL identifications.

Result: 168 out of 169 targets have been detected.

Detection limit 4 mJy.

Direct correlation of $\gamma\text{-ray}$ and radio fluxes at 1–100 Gev for 2FGL associations with $\delta>-30^\circ$

• — results from a dedicated VLBA+GBT experiment.

• — other experiments.

Compactness of Fermi sources and the AGN complete sample

The histogram of parsec-scale flux densities of Fermi sources and the AGN complete sample

Log N/Log S curve for Fermi sources and the AGN complete sample using correlated flux density from regions < 50 mas

40% sources with $F_{\rm corr}(8 \text{ GHz}) > 1$ Jy have a Fermi association 20% sources with $F_{\rm corr}(8 \text{ GHz}) > 0.2$ Jy have a Fermi association

Conclusions

- $\sim 1/2$ Fermi sources at $\delta > -30^{\circ}$ and $|b| > 10^{\circ}$ are associated with VLBI sources and have position accuracy < 1 mas;
- Fermi position errors should be scaled by 0.60;
- Position errors of $\sim 5\%$ Fermi objects significantly exceed reported error bars;
- There is a **positive correlation** between γ -ray and parsec-scale radio fluxes. The upper envelop of γ -ray/radio flux diagram has been confirmed;
- Fermi sources are significantly **more compact** than the general AGN population;
- Log N/Log S diagram shows that the share of Fermi detections among *all* VLBI sources is gradually **reduced** at low correlated flux density at 8 GHz.

What's next?

- VLBI observations of sources at $\delta < -30^{\circ}$ with LBA (*observed right now*)
- VLBA+GBT observations of weak radio- γ 2FGL associations (*approved*)