OVRO 40m blazar monitoring program: Understanding the relationship between 15 GHz radio variability properties and gamma-ray activity in blazars

Walter Max-Moerbeck on behalf of the OMG

OMG: OVRO 40m Monitoring Group

- Caltech:
 - W. Max-Moerbeck
 - J. L. Richards -> Purdue U.
 - V. Pavlidou -> MPIfR
 - T. Hovatta
 - O. G. King
 - T. J. Pearson
 - A. C. S. Readhead
 - R. Reeves
 - M. C. Shepherd
 - M. A. Stevenson

Other collaborators:

- O L. Furhmann
- E. Angelakis
- O J. A. Zensus
- O L. C. Weintraub
- R. Bustos
- O L. C. Weintraub
- O S. E. Healey
- O R. W. Romani
- O M. S. Shaw
- o K. Grainge
- O M. Birkinshaw
- K. Lancaster
- O D. M. Worrall
- O G. B. Taylor
- O G. Cotter

Locating the gamma-ray emission site and radio variability of blazars

Problems:

- Where does the gamma-ray emission originates in blazars?
- What characterizes Fermi detected blazars as viewed in radio?
- Strategy:
 - Study radio and gamma-ray light curves for a large number of sources
 - Large sample of objects
 - Preselected as gamma-ray candidates
 - Observed independently of gamma-ray state
 - High cadence, observed twice per week
 - Robust statistical tests

OVRO 40 m Telescope Blazar monitoring program

- Monitoring 1550 blazars
- 454 detected by Fermi on 1LAC "clean" sample
- Radio continuum 15 GHz, 3 GHz bandwidth
- 4 mJy thermal noise, ~3% typical uncertainty

Distribution of CGRaBS sources in equatorial coordinates. Red circles CGRaBS, Blue circles 1LAC

The OVRO 40 m Telescope at night By Joey Richards

Our radio light curves: A better picture of Fermi and Jansky

Our radio light curves: A better picture of Fermi and Jansky

First results of the monitoring program: 2 years of data

- First data release, 2 years of data for original CGRaBS sample
- Radio variability properties studied using "intrinsic modulation index" m=σ/S
 - Gamma-ray detected sources are more variable in radio than non-detected ones
 - BL Lacs are more variable in radio than FSRQs
 - Low redshift FSRQs are more variable than high redshift ones

An update on radio variability properties: 3.5 years of data

- Gamma-ray detected still more variable than non-detected
- BL Lacs vs FSRQs

 Well defined samples are required to study population properties

Redshift trend still there but less significant

Correlated radio and gamma-ray variability: Constraining the location of the gamma-ray emission

• Where in the jet are the gamma-rays produced?

• Close to central engine < 1 pc

• Further down the jet, a few parsecs

Results for brightest Fermi detected sources

Radio data

- 2 year light curves of CGRaBS + a few calibrators
- Published in Richards et al 2011, ApJS 194, 29
- Gamma-ray data
 - Published by Fermi collaboration on blazar variability paper. Abdo et al. 2010, ApJ 722, 520
 - 106 sources
 - 11 month light curves, weekly sampling
 - 52 / 106 are in CGRaBS and have simultaneous radio data

Radio/gamma-ray time lags and their significance

 Example cross-correlation. 3-month Fermi detections, using 11-months of Fermi data and 2 years of radio monitoring

 β radio = 2.0.

 β gamma = 1.5

 \circ Significance evaluated using simulated data with a power-law PSD ~ 1/f^Aβ

Only 7 out of 52 sources show significant correlations!

Time lags and significance

All sources

> 3σ significance

LAT Name	CGRaBS name	Optical class	SED class	τ days	significance %	uncertainty %
0FGLJ0050.5-0928	J0050-0929	BLLac	ISP	-170.0 ± 13.0	>99.98	0.0
0FGLJ0238.6+1636	J0238 + 1636	BLLac	LSP	-50.0 ± 10.0	99.98	0.02
0FGLJ0712.9+5034	J0712 + 5033	BLLac	ISP	-220.0 ± 15.0	99.98	0.02
0FGLJ0855.4+2009	J0854 + 2006	BLLac	LSP	-440.0 ± 60.0	99.86	0.05
0FGLJ1218.0+3006	J1217+3007	BLLac	HSP	120.0 ± 7.0	>99.98	0.0
0FGLJ1719.3+1746	J1719+1745	BLLac	LSP	180.0 ± 5.0	99.88	0.05
0FGLJ2254.0+1609	J2253 + 1608	FSRQ	LSP	20.0 ± 12.0	99.96	0.03

preliminary

Radio power spectral density

Detected vs non-detected

- Gamma-ray detected sources have steeper power spectral densities
- No clear difference for the case of BL Lacs vs FSRQs
- What will happen with longer radio time series?

We use Uttley et al 2002, MNRAS 332, 231, with some modifications

What is ahead?

- Longer time series in radio and gamma-ray for more sources
 - Population studies
 - Individual source variability. More flares on each one
 - PSD characterization, populations, breaks, other models for light curves
- Polarization monitoring
- Optical monitoring

Polarization monitoring: KuPol

- Polarization probes the structure of magnetic fields in emission region
- KuPol a new receiver in the 12 to 18 GHz band

Optical monitoring: RoboPol

- Aim: high-cadence monitoring of linear polarization of a large (~100) sample of blazars
- Automated observing, dynamic observing schedule capable of responding to changes in a source
 - Goal: high-cadence light curves of polarization events
- Will use the Skinakas 1.3 m telescope at U. Crete
- Polarimeter is funded and under construction
- Observations to start in the Northern summer of 2012
- Participating institutions are: Caltech, MPIfR, Torun, U. Crete/FORTH and IUCAA

3C 279 Abdo et al. 2010, Nature 463, 919

Skinakas 1.3m telescope U. Crete

Summary

- Using high cadence radio and gamma-ray light curves we study the connection between radio and gamma-ray emission in Fermi detected blazars
- We find that 7 out of 52 sources studied have 3 or significant correlations
- The significance depends on the model for the light curves => robust methods to characterize them are required
- Polarization monitoring will start observing next year
 - Radio with KuPol
 - Optical with RoboPol