The (sub-) mm and γ-rays connection in blazars

J. León-Tavares
Metsähovi Radio Observatory (Finland)

In collaboration with: E. Valtaoja, M. Tornikoski, A. Lähteenmäki, E. Nieppola
Planck

- launched in August 2009
- all-sky survey in 6 months
- 9 months catalog of compact sources (ERCSC) at 9 frequencies: 30, 44, 70, 100, 143, 217, 353, 545, 860 GHz
Planck Early Results 15: Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

Observatories involved: APEX, ATCA, Effelsberg, IRAM, Medicina, Metsahovi, MRO, OVRO, RATAN, VLA, KVA, Xinglong, SWIFT, Fermi/LAT

Simultaneous Planck, Swift, and Fermi observations of X-ray and \(\gamma\)-ray selected blazars

P. Giommi23, G. Polenta83, A. Lähteenmäki1, D. J. Thompson1, M. Capalbi1, S. Cutini5, D. Gasparri13, J. González-Nuevo12, J. León-Tavares1, M. López-Carriego12, M. N. Mazzotta51, C. Monti42,3, M. Perri1, S. Rainò13,40, G. Tosti15,19, A. Tramacere84, P. Verrecchia82

A&A accepted, arXiv:1108.1114
Planck Early Results 15: Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

A&A accepted, arXiv:1101.2047

\[\alpha_{\text{LF}} (\leq 70 \text{ GHz}) \]
\[\alpha_{\text{HF}} (> 70 \text{ GHz}) \]
A flat α_{HF} has two possible explanations:

- either the total HF spectra are defined by several underlying components or,

- the energy spectrum of the electron population is much harder than generally assumed ($s \approx 1.5$)

Planck Early Results

Ackermann + 2010
Simultaneous Planck, Swift, and Fermi observations of X-ray and γ-ray selected blazars

P. Giommi2,3, G. Polenta2,2, A. Lähteenmäki1,3, D. J. Thompson4, M. Capalbi5, S. Cutini2, D. Gasparrini2, J. González-Nuevo2, J. Ledón-Tavares1, M. López-Caniego14, M. N. Mazzotta13, C. Monie12,3, M. Perri2, S. Rainò14,3, G. Testi2,13, A. Tramacere14, F. Verrecchia2,

A&A accepted, arXiv:1108.1114
• Simple SSC models cannot explain the SED of many blazars

• No obvious correlation of the type predicted by the blazar-sequence was found.
mm and γ-ray connection

- From the Metsahovi QSO monitoring program, we select the 45 best sampled light curves.

- We decompose the 37 GHz Metsahovi light curves into individual exponential flares as in Valtaoja et al. (1999)

- Each of the individual outburst corresponds to the ejection of a new component into the jet (Savolainen et al. 2002).

mm and γ-ray flares

mm and γ-ray flares
mm and γ-ray flares

mm flare onset ≈ e-folding time

mm-γ-rays delay

The average delay from a mm-flare onset \((S_{\text{max}}/e)\) to the peak of the most intense γ-rays is,

\[
t_{0}^{\text{mm}} - t_{\text{peak}}^{\text{LAT}} \sim -70 \text{ days}
\]

in the source frame,

\[
t_{0}^{\text{mm}} - t_{\text{peak}}^{\text{LAT}} \sim -30 \text{ days}
\]
The location of the γ-rays zone

We convert the observed delay into linear distances by

$$\Delta \tau = \frac{\beta_{app} c (t_{0}^{mm} - t_{\text{peak}}^{\text{mm}})}{\sin \theta (1 + z)}$$

$$< R_\gamma > \sim 7 \text{ pc}$$

Well agreement with the average distance derived by Pushkarev et al. (2010)

OJ 287 : $R_\gamma > 14 \text{ pc}$
(Agudo et al. 2010)

3C 279 : $R_\gamma \sim 10^5 R_\odot$
(Fermi-LAT collaboration. 2010)

<table>
<thead>
<tr>
<th>source</th>
<th>alias</th>
<th>phase</th>
<th>$t_0^{mm} - t_{\text{peak}}^{\text{mm}}$ [days]</th>
<th>distance [pc]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0048-097</td>
<td></td>
<td>0.8</td>
<td>-58.90</td>
<td>...</td>
</tr>
<tr>
<td>0059+581</td>
<td></td>
<td>1.1</td>
<td>-79.32</td>
<td>6.44</td>
</tr>
<tr>
<td>0106+013</td>
<td></td>
<td>0.4</td>
<td>-63.00</td>
<td>8.94</td>
</tr>
<tr>
<td>0109+224</td>
<td>S2 0109+22</td>
<td>0.6</td>
<td>-28.54</td>
<td>...</td>
</tr>
<tr>
<td>0133+476</td>
<td></td>
<td>1.1</td>
<td>-62.15</td>
<td>8.36</td>
</tr>
<tr>
<td>0212+735</td>
<td></td>
<td>1.1</td>
<td>-88.33</td>
<td>1.44</td>
</tr>
<tr>
<td>0218+357</td>
<td></td>
<td>0.9</td>
<td>-74.68</td>
<td>...</td>
</tr>
<tr>
<td>0219+428</td>
<td>3C 66</td>
<td>0.9</td>
<td>-73.08</td>
<td>...</td>
</tr>
<tr>
<td>0235+164</td>
<td></td>
<td>0.6</td>
<td>-29.03</td>
<td>3.60</td>
</tr>
<tr>
<td>0316+413</td>
<td>3C 84</td>
<td>0.6</td>
<td>-37.50</td>
<td>0.03</td>
</tr>
<tr>
<td>0336-019</td>
<td>CTA 026</td>
<td>0.8</td>
<td>-55.96</td>
<td>10.18</td>
</tr>
<tr>
<td>0420-014</td>
<td></td>
<td>0.5</td>
<td>-33.08</td>
<td>3.22</td>
</tr>
<tr>
<td>0440-003</td>
<td>NRAO 190</td>
<td>0.3</td>
<td>16.36</td>
<td>...</td>
</tr>
<tr>
<td>0507+179</td>
<td></td>
<td>1.1</td>
<td>-76.11</td>
<td>...</td>
</tr>
<tr>
<td>0528+134</td>
<td></td>
<td>0.6</td>
<td>-34.29</td>
<td>6.45</td>
</tr>
<tr>
<td>0736+017</td>
<td></td>
<td>1.4</td>
<td>-104.29</td>
<td>10.50</td>
</tr>
<tr>
<td>0754+100</td>
<td></td>
<td>0.6</td>
<td>-44.45</td>
<td>3.54</td>
</tr>
<tr>
<td>0827+243</td>
<td>OJ 248</td>
<td>1.6</td>
<td>-143.26</td>
<td>20.05</td>
</tr>
<tr>
<td>0851+202</td>
<td>OJ 287</td>
<td>0.1</td>
<td>68.44</td>
<td>11.60</td>
</tr>
<tr>
<td>0917+449</td>
<td></td>
<td>0.5</td>
<td>-30.59</td>
<td>...</td>
</tr>
<tr>
<td>1055+018</td>
<td></td>
<td>0.7</td>
<td>-63.45</td>
<td>3.79</td>
</tr>
<tr>
<td>1156+295</td>
<td>4C 29.45</td>
<td>1.2</td>
<td>-81.55</td>
<td>28.22</td>
</tr>
<tr>
<td>1219+285</td>
<td>ON 231</td>
<td>1.5</td>
<td>-132.64</td>
<td>...</td>
</tr>
<tr>
<td>1222+216</td>
<td>PKS1222+21</td>
<td>1.2</td>
<td>-125.24</td>
<td>17.33</td>
</tr>
<tr>
<td>1226+023</td>
<td>3C 273</td>
<td>1.3</td>
<td>-207.59</td>
<td>35.13</td>
</tr>
<tr>
<td>1253-055</td>
<td>3C 279</td>
<td>0.8</td>
<td>-50.11</td>
<td>13.46</td>
</tr>
</tbody>
</table>

The γ-ray emission site

EC [Accretion-disk, BLR]

SSC [jet]

EC [Torus]

$7 \text{pc} \sim 1.5 \times 10^5 R_G$

(assuming $M_{BH} = 5 \times 10^8 M_\odot$)
The strongest γ-ray flares occur after the mm flare onset and are produced at \(<R_γ> = 7 \) pc from the radio-core.

The source of seed photons could be either the jet itself \((SSC \ fails \ to \ reproduce \ the \ observed \ γ-rays, \ Lindfors \ et \ al. \ 2006) \) or the dusty torus \((\ few \ detections, \ Turler \ et \ al. \ 2006, \ Malmrose \ et \ al. \ 2011). \)

Soft-photon field from BLR unlikely...?
is Jet Influencing BLR?
The Telescopes

3C 390.3
- Optical monitoring
 - *(Shapovalova et al. 2001; 2010)*
- Radio monitoring

3C 120
- Optical monitoring
 - 2002–2008
 - *(Doroshenko et al. 2009)*
- Radio monitoring
 - 2001–2008

Very Long Baseline Array
- 11 ± 1 telescopes
The case of 3C 390.3 (FR II)

Linear fits to component separations yield epochs of ejection from the core D and passages through the stationary region $S1$.

Is Jet Influencing BLR?

The flaring optical-continuum in 3C390.3 is associated with the stationary component located in the jet ~0.4 pc from the core.

The case of 3C 120 (FR I)
Is Jet Influencing BLR?

Is Jet Influencing BLR?

3C120: The same relation between optical flares and passages of new jet components through a stationary region located at about 1.3 pc from the core.

The source of variable optical-continuum
Dusty torus

Radio-core

Outflowing BLR

Stationary feature

Non-thermal optical continuum

Broad-line emission

flux

time

Dusty torus
is Jet Influencing BLR?

The **flaring** component of the **optical-continuum** in 3C 390.3 and 3C 120 is associated with the stationary region located **in the jet**.

Since the strength of Hβ and continuum emission is correlated in 3C 390.3 and 3C 120 then a significant amount of **broad-line emission** is **driven** by continuum radiation from the **jet**.

Thus, BLR is complex and **NOT** completely virialized.

Implications of an outflowing BLR

- **AGN models**: BLR is complex and may have other components (e.g., inflows, outflows).

- **BH mass**: Estimates using reverberation mapping relations (assume BLR is virialized).

- **γ-rays**: Outflowing BLR may serve as a source of seed photons for inverse Compton scattering? (Leon-Tavares et al. 2011, A&A, 532, 146)
The γ-ray emission site
Work in progress: Spectroscopic monitoring

Monitoring a sample of bright gamma-ray blazars with prominent broad-line emission
Summary II

- The strongest γ-ray flares occur after the mm flare onset and are produced at $<R_\gamma> = 7$ pc from the radio-core.

- The source of seed photons could be either the jet *itself*, *dusty torus* or....

- An outflowing BLR might be an alternative source of BLR seed photons to produce γ-rays, even at distances of several parsecs from the BH.