High Energy Emission from Composite Supernova Remnants
• **Pulsar Wind**
 - sweeps up ejecta; shock decelerates flow, accelerates particles; PWN forms

• **Supernova Remnant**
 - sweeps up ISM; reverse shock heats ejecta; ultimately compresses PWN
 - self-generated turbulence by streaming particles, along with magnetic field amplification, promote **diffusive shock acceleration** of electrons and ions to energies exceeding 10-100 TeV

Gaensler & Slane 2006
SNRs in Dense Environments

• The expected $\pi^0 \rightarrow \gamma\gamma$ flux for an SNR is

\[F(>100\text{MeV}) \approx 4.4 \times 10^{-7} \theta E_{51} d_{kpc}^{-2} n \text{ phot cm}^{-2} \text{ s}^{-1} \]

where θ is a slow function of age (Drury et al. 1994)
- this leads to fluxes near sensitivity limit of EGRET, but only for large n

• Efficient acceleration can result in higher values for I-C γ-rays
- SNRs should be detectable w/ Fermi for sufficiently high density; favor SNRs in dense environments or highly efficient acceleration
- expect good sensitivity to SNR-cloud interaction sites (e.g. W44, W28, IC 443), and indeed these are detected

1 yr sensitivity for high latitude point source
SNRs in Dense Environments

• The expected $\pi^0 \rightarrow \gamma\gamma$ flux for an SNR is

$$F(>100\text{MeV}) \approx 4.4 \times 10^{-7}\theta_{51}d_{\text{kpc}}^{-2}n \text{ phot cm}^{-2} \text{ s}^{-1}$$

where θ is a slow function of age (Drury et al. 1994)
 - this leads to fluxes near sensitivity limit of EGRET, but only for large n

• Efficient acceleration can result in higher values for I-C γ-rays
 - SNRs should be detectable w/ Fermi for sufficiently high density; favor SNRs in dense environments or highly efficient acceleration
 - expect good sensitivity to SNR–cloud interaction sites (e.g. W44, W28, IC 443), and indeed these are detected

Patrick Slane (CfA) GeV and TeV Sources in the Milky Way Aspen, CO 2010
SNRs in Dense Environments

- SNRs with maser emission are sources of GeV emission (Castro & Slane 2010)
- Since composite SNRs are likely to be found in dense regions, one might expect GeV emission from the remnant itself
Evolution of a Composite SNR

- SNR expands into surrounding CSM/ISM. In Sedov phase,

\[
R_{SNR} \approx 6.2 \times 10^4 \left(\frac{E_{SN}}{n_0} \right)^{1/5} t^{2/5}
\]

- PWN expands into surrounding ejecta, powered by input from pulsar:

\[
R_{PWN} \approx 1.44 \left(\frac{E_{SN}^3 \dot{E}_0}{M_{ej}^5} \right)^{1/10} t^{6/5}
\]

- In principle, PWN can overtake SNR boundary
 - In reality, SNR reverse shock will first interact w/ PWN
Evolution of a Composite SNR

- SNR expands into surrounding CSM/ISM. In Sedov phase,
 \[R_{\text{SNR}} \approx 6.2 \times 10^4 \left(\frac{E_{\text{SN}}}{n_0} \right)^{1/5} t^{2/5} \]

- PWN expands into surrounding ejecta, powered by input from pulsar:
 \[R_{\text{PWN}} \approx 1.44 \left(\frac{E_{\text{SN}}^3 \dot{E}_0}{M_{ej}^5} \right)^{1/10} t^{6/5} \]

- In principle, PWN can overtake SNR boundary
 - In reality, SNR reverse shock will first interact w/ PWN

- Treating evolution self-consistently, with rapid initial SNR expansion, and evolution of PWN and SNR reverse shock through common ejecta distribution reveals more details...
Aspen, CO 2010
Patrick Slane (CfA)

Evolution of a Composite SNR

• Forward shock behavior (primarily, as far as we understand) determines γ-ray emission from the SNR
 - DSA, B_0, n_0

• Pulsar input plus confinement by ejecta determines γ-ray emission from the PWN
 - B_{PWN}, E_e, reverse-shock interaction

GeV and TeV Sources in the Milky Way
Aspen, CO 2010
Evolution of PWN Emission

• Spin-down power is injected into the PWN at a time-dependent rate

\[\dot{E} = I \Omega \dot{\Omega} = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\frac{n+1}{n-1}} \]

• Assume power law input spectrum:

\[Q(t) = Q_0(t)(E_e/E_b)^{-\alpha} \]

- note that studies of Crab and other PWNe suggest that there may be multiple components

• Get associated synchrotron and IC emission from electron population in the evolved nebula

- combined information on observed spectrum and system size provide constraints on underlying structure and evolution
Evolution of PWN Emission

- Spin-down power is injected into the PWN at a time-dependent rate

\[\dot{E} = I \Omega \dot{\Omega} = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\frac{n+1}{n-1}} \]

- Assume power law input spectrum:

\[Q(t) = Q_0(t) (E_e / E_b)^{-\alpha} \]

- Note that studies of Crab and other PWNe suggest that there may be multiple components

- Get associated synchrotron and IC emission from electron population in the evolved nebula
 - Combined information on observed spectrum and system size provide constraints on underlying structure and evolution

Bucciantini et al. 2010
• 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - PWN and torus observed in Spitzer/IRAC

• Low-frequency break suggests possible break in injection spectrum
 - IR flux for entire nebula falls within the extrapolation of the X-ray spectrum
 - indicates single break just below IR

• Torus spectrum requires change in slope between IR and X-ray bands
 - challenges assumptions for single power law for injection spectrum

Slane et al. 2008
• Pulsar is detected in Fermi-LAT
 - to date, no detection of PWN in off-pulse data
Evolution in an SNR: Vela X

- XMM spectrum shows nonthermal and ejecta-rich thermal emission from cocoon
 - reverse-shock crushed PWN and mixed in ejecta?

- Broadband measurements consistent with synchrotron and I-C emission from PL electron spectrum w/ two breaks, or two populations
 - density too low for pion-production to provide observed γ-ray flux
 - magnetic field very low (5 µG)
Treating radio-emitting particles as separate population, flux limits suggest detection of IC component in GeV band

- AGILE and Fermi–LAT measurements confirm these predictions
 - apparent difference between main nebula and cocoon
Treatng radio-emitting particles as separate population, flux limits suggest detection of IC component in GeV band.

AGILE and Fermi-LAT measurements confirm these predictions
- apparent difference between main nebula and cocoon

XMM large project to map cocoon and much of remaining nebula underway.
HESS J1640-465

- Extended source identified in HESS GPS
 - no known pulsar associated with source
 - may be associated with SNR G338.3–0.0

- XMM observations (Funk et al. 2007) identify extended X-ray PWN

- Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
 - $L_x \sim 10^{33.1}$ erg s$^{-1}$ $\Rightarrow \dot{E} \sim 10^{36.7}$ erg s$^{-1}$
 - X-ray and TeV spectrum well-described by leptonic model with $B \sim 6$ μG and $t \sim 15$ kyr
 - example of late-phase of PWN evolution: X-ray faint, but γ-ray bright
HESS J1640-465

- Extended source identified in HESS GPS
 - no known pulsar associated with source
 - may be associated with SNR G338.3-0.0

- XMM observations (Funk et al. 2007) identify extended X-ray PWN

- Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
 - \(L_x \sim 10^{33.1} \text{ erg s}^{-1} \) \(\Rightarrow \) \(\dot{E} \sim 10^{36.7} \text{ erg s}^{-1} \)
 - X-ray and TeV spectrum well-described by leptonic model with \(B \sim 6 \mu \text{G} \) and \(t \sim 15 \text{ kyr} \)
 - example of late-phase of PWN evolution: X-ray faint, but \(\gamma \)-ray bright
HESS J1640–465

- Extended source identified in HESS GPS
 - no known pulsar associated with source
 - may be associated with SNR G338.3–0.0

- XMM observations (Funk et al. 2007) identify extended X-ray PWN

- Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
 - $L_x \sim 10^{33.1}$ erg s$^{-1}$ \rightarrow $\dot{E} \sim 10^{36.7}$ erg s$^{-1}$
 - X-ray and TeV spectrum well-described by leptonic model with $B \sim 6$ μG and $t \sim 15$ kyr
 - example of late-phase of PWN evolution: X-ray faint, but γ-ray bright

- Fermi LAT reveals emission associated with source

Patrick Slane (CfA) GeV and TeV Sources in the Milky Way Aspen, CO 2010
• PWN model with evolved power law electron spectrum fits X-ray and TeV emission
 - Fermi emission falls well above model
• PWN model with evolved power law electron spectrum fits X-ray and TeV emission
 - Fermi emission falls well above model

• Modifying low-energy electron spectrum by adding Maxwellian produces GeV emission through inverse Compton scattering
 - primary contribution is from IR from dust (similar to Vela X)
 - mean energy ($\gamma \sim 10^5$) and fraction in power law (~4%) consistent with particle acceleration models
Aspen, CO 2010

Patrick Slane (CfA)

• PWN model with evolved power law electron spectrum fits X-ray and TeV emission
 - Fermi emission falls well above model

• Modifying low-energy electron spectrum by adding Maxwellian produces GeV emission through inverse Compton scattering
 - primary contribution is from IR from dust (similar to Vela X)
 - mean energy ($\gamma \sim 10^5$) and fraction in power law (~4%) consistent w/ particle acceleration models

• GeV emission can also be fit w/ pion model
 - requires $n_0 > 100$ cm$^{-3}$, too large for G338.3-0.3
Probing Composite SNRs With Fermi

- MSH 15-56 is a composite SNR for which radio size and morphology suggest post-RS interaction evolution

- Chandra and XMM observations show an offset compact source with a trail of nonthermal emission surrounded by thermal emission (Plucinsky et al. 2006) – possibly similar to Vela X

- Good candidate for γ-rays,

And...
Probing Composite SNRs With Fermi

- Watch for studies of this and other such systems with Fermi

Patrick Slane (CfA) | GeV and TeV Sources in the Milky Way | Aspen, CO 2010
Questions

• Is stage of evolution a crucial factor in determining whether or not a PWN will be a bright GeV emitter? In particular, is the reverse-shock interaction an important factor?

• Are multiple underlying particle distributions (if they indeed exist) physically distinct? If so, what do they correspond to?

• How can we best differentiate between PWN and SNR emission in systems we can't resolve (in gamma-rays)?