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Composite Supernova Remnants
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Composite SNRs
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flow, accelerates particles; PWN forms

* Supernova Remnant

- sweeps up ISM; reverse shock heats
ejecta; ultimately compresses PWN

- self-generated turbulence by streaming
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particles, along with magnetic field amplification, promote diffusive shock acceleration

of electrons and ions fo energies exceeding 10-100 TeV
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SNRs in Dense Environments
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* The expected n® — yy flux for an SNR is
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F(> 100MeV) =~ 4.4 x 107 0E d,/.n phot cm™ s°
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W28, W44, y Cygni, IC 443...

where 0 is a slow function of age (Drury .=

et al. 1994)
- this leads to fluxes near sensitivity limit

of EGRET, but only for large n
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* Efficient acceleration can result in higher
values for I-C y-rays
- SNRs should be detectable w/ Fermi for

sufficiently high density; favor SNRs
in dense environments or highly efficient
acceleration Age (x10* yr)
- expect good sensitivity to SNR-cloud
interaction sites (e.q. W44, W28, IC 443), N _ , _
and indeed these are detected 1 yr sensitivity for high latitude point source
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SNRs in Dense Environments
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* The expected n® — yy flux for an SNR is

F(> 100MeV) =~ 4.4 x 107 0E, d.’.n phot cm™ s

kpc

where 8 is a slow function of age (Drury
et al. 1994)
- this leads to fluxes near sensitivity limit

of EGRET, but only for large n

* Efficient acceleration can result in higher

values for I-C y-rays

- SNRs should be detectable w/ Fermi for
sufficiently high density; favor SNRs
in dense environments or highly efficient
acceleration

- expect good sensitivity to SNR-cloud
interaction sites (e.qg. W44, W28, IC 443),
and indeed these are detected
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SNRs in Dense Environments

G349.7+0.2 . CTB 37A

G348.5+0.1-CTB 37A

* SNRs with maser
emission are sources
of GeV emission
(Castro & Slane 2010)

Declination
Declination

* Since composite SNRs

258.800 258.700

- 37550 559 600 950 259.400 ; s .
, ‘ ‘ = | are likely to be found

in dense regions, one
might expect GeV
emission from the
remnant itself

Declination
Declination

272.000 271.500 271.000 270.500
282.400 282.300 282.200 282.100
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Evolution of a Composite SNR

* SNR expands into surrounding — T ,
CSM/ISM. In Sedov phase,
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* In principle, PWN can overtake
SNR boundary
- In reality, SNR reverse shock
will first interact w/ PWN
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Evolution of a Composite SNR

* SNR expands into surrounding
CSM/ISM. In Sedov phase,
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Radius (pc)

* PWN expands into surrounding
ejecta, powered by input from
pulsar:

1000 104
Time (years)

* In principle, PWN can overtake * Treating evolution self-consistently, with rapid
SNR boundary initial SNR expansion, and evolution of PWN and
- In reality, SNR reverse shock SNR reverse shock through common ejecta

will first interact w/ PWN distribution reveals more details...
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Evolution of a Composite
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* Forward shock behavior (primarily, as far as we understand) determines y-ray emission

from the SNR
- DSA, By, n,
* Pulsar input plus confinement by ejecta determines y-ray emission from the PWN
- Bpwn Ee Teverse-shock interaction
Aspen, CO 2010
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Evolution of PWN Emission

* Spin-down power is injected into the
PWN at a time-dependent rate
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* Assume power law input spectrum:
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- note that studies of Crab and other .// P IR B ) AP R

PWNe suggest that there may be PETI—T: -5 0 5
multiple components Log Photon Energy (MeV)

\
\
l
|
l
I
d

* Get associated synchrotron and IC emission from electron population in the
evolved nebula

- combined information on observed spectrum and system size provide
constraints on underlying structure and evolution
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Evolution of PWN Emission

* Spin-down power is injected into the
PWN at a time-dependent rate

* Assume power law input spectrum:

0t)=Q,()(E,/E,) "

- note that studies of Crab and other

PWNe suggest that there may be 10" 10'® 10%°
muh‘iple componen’rs Bucciantini et al. 2010 Frequency (Hz)

* Get associated synchrotron and IC emission from electron population in the
evolved nebula
- combined information on observed spectrum and system size provide
constraints on underlying structure and evolution
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‘ : Broadband Observations of 3C 58

Slane et al. 2008 « 3C 58 is a bright, young PWN
- morphology similar to radio/x-ray; suggests
low magnetic field

[RAS - PWN and torus observed in Spitzer/IRAC
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%pitzer * Low-frequency break suggests possible

break in injection spectrum

- IR flux for entire nebula falls within the
extrapolation of the X-ray spectrum

- indicates single break just below IR
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* Torus spectrum requires change in
slope between IR and X-ray bands

- challenges assumptions for single power
law for injection spectrum
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Broadband Observations of 3C 58
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* Pulsar is detected in Fermi-LAT
102 103 10* 105 108 107 108 10° 100 - to date, no detection of PWN
Frequency (GHz) in off-pulse data

GeV and TeV Sources in the Milky Way Aspen, CO 2010



Evolution in an SNR: Vela X

\ .LaMassa et al. 2008 | _ -

Two—break Model
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* XMM spectrum shows nonthermal and ejecta-rich thermal emission from cocoon
- reverse-shock crushed PWN and mixed in ejecta?

» Broadband measurements consistent with synchrotron and I-C emission from PL
electron spectrum w/ two breaks, or two populations

- density too low for pion-production to provide observed y-ray flux
- magnetic field very low (5 uG)
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Evolution in an SNR: Ve
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* Treating radio-emitting particles as separate population, flux limits suggest
detection of IC component in GeV band

* AGILE and Fermi-LAT measurements confirm these predictions
- apparent difference between main nebula and cocoon
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Evolution in an SNR: Vela X

Abdo et al. 2010

* Treating radio-emitting particles as separate population, flux limits suggest
detection of IC component in GeV band

* AGILE and Fermi-LAT measurements confirm these predictions
- apparent difference between main nebula and cocoon

* XMM large project to map cocoon and much of remaining nebula underway
Patrick Slane (CfA) GeV and TeV Sources in the Milky Way Aspen, CO 2010




HESS J1640-465

(G338.45+0.06

HESS J1640-465

G338.3-0.0
\‘ | Swift XRT

5 arcmin

* Extended source identified in HESS GPS

- no known pulsar associated with source
- may be associated with SNR G338.3-0.0

* XMM observations (Funk et al. 2007) identify extended X-ray PWN

* Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
- L, ~1031 erg s & E ~ 1037 erg s
- X-ray and TeV spectrum well-described by leptonic model with B ~6 uG and t ~15 kyr
- example of late-phase of PWN evolution: X-ray faint, but y-ray bright
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HESS J1640-465
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* Extended source identified in HESS GPS
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- no known pulsar associated with source Ty ../l T Y Y Y Y T R
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- may be associated with SNR G338.3-0.0 Energy (eV)

* XMM observations (Funk et al. 2007) identify extended X-ray PWN

* Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
- L, ~1031 erg s & E ~ 1037 erg s
- X-ray and TeV spectrum well-described by leptonic model with B ~6 uG and t ~15 kyr
- example of late-phase of PWN evolution: X-ray faint, but y-ray bright
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HESS J1640-465 1FGL J1640.8-4634

HESS
J1640-465

centroid

* Extended source identified in HESS GPS

- no known pulsar associated with source 3EG J1639-4702
- may be associated with SNR G338.3-0.0 /" __.-errorcircle Slane et al. 2010

* Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
- L, ~1031 erg s & E ~ 1037 erg s
- X-ray and TeV spectrum well-described by leptonic model with B ~6 uG and t ~15 kyr
- example of late-phase of PWN evolution: X-ray faint, but y-ray bright

* Fermi LAT reveals emission associated with source
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* PWN model with evolved power
law electron spectrum fits X-ray

and TeV emission

- Fermi emission falls well above

model

Patrick Slane (CfA)

HESS J1640-465

Slane et al. 2010
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HESS J1640-465

* PWN model with evolved power
law electron spectrum fits X-ray
and TeV emission
- Fermi emission falls well above

model

Modifying low-energy electron

spectrum by adding Maxwellian

produces GeV emission through

inverse Compton scattering

- primary contribution is from IR
from dust (similar to Vela X)

- mean energy (y~10°) and fraction

in power law (~4%) consistent w/
particle acceleration models

Patrick Slane (CfA)
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GeV and TeV Sources in the Milky Way

Slane et al. 2010
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HESS J1640-465

* PWN model with evolved power
law electron spectrum fits X-ray

and TeV emission
- Fermi emission falls well above
model

Slane et al. 2010
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* Modifying low-energy electron
spectrum by adding Maxwellian
produces GeV emission through
inverse Compton scattering

T T ] I I T T 1 1 I 1 ] 1 T [ T ] ] 1 l 1 ] L] T

| HESS J1640-465

|
e
o

Fermi

- primary contribution is from IR
from dust (similar to Vela X)

- mean energy (y~10°) and fraction
in power law (~4%) consistent w/
particle acceleration models

|
—_
4V

Log Flux (erg cm-2 s-1)
[
-~

* GeV emission can also be fit w/

pion model :

- requires n, > 100 cm3, too large -10 -5
for G338.3-0.3 Log Photon Energy (MeV)
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Probing Composite SNRs With Fermi

MSH 15-56 * MSH 15-56 is a composite SNR for
which radio size and morphology
suggest post-RS inferaction evolution

* Chandra and XMM observations show
an offset compact source with a trail
of nonthermal emission surrounded by
thermal emission (Plucinsky et al. 2006)
- possibly similar o Vela X

* Good candidate for y-rays,

And...

7 arcmin
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Probing Composite SNRs With Fermi

M3SH 15-56

IFGL J1552.4-5609

7 arcmin

* Watch for studies of this and other such systems with Fermi
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. Questions:

* Is stage of evolution a crucial
factor in determining whether =
or not a PWN will be a bright * =
GeV emitter? In particular, is
the reverse-shock interaction
an important factor?

* Are multiple underlying particle
distributions (if they indeed
exist) physically distinct? If so,
what do they correspond to?:.

* How can we best differentiate . -
between PWN and SNR emission
in systems we can't resolve (in
gamma-rays)?
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