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Follow the Energy: Spindown


Φ=1012 V


Force Free Magnetosphere - 

  Spin down by EM torques

  Magnetic energy dominant, non-

  vacuum, enough plasma for 

Contopoulos et al, Gruzinov, 

   Timokhin: FF, aligned rotator, 

       steady state: 

Komissarov  rel mhd, McKinney FF: aligned  

        rotator, evolutionary 

Bucciantini et al, rel MHD, pressure driven flow,

     aligned rotator, evolutionary:

Spitkovsky: FF, evolutionary, aligned 

    & 3D oblique:                  (also Kalpotharakos)


!! !! "K
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IF RY/RL decreases with decreasing Ω, n<3;

  average RY/RL must decrease on spindown

  timescale, since 2 < n < 3


RY/RL < 1 increases

 torque because of 

 more open field lines 

 and larger Poynting 

 flux for same RL:  
Reconnection


“Average” with 

  respect to plasmoid 

  emission, torque 

  fluctuations

 (                ~ 10-30% ~ obs)

Spindown biases fluctuations

 toward increasingly open flux??


Bucciantini et al 06
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Spitkovsky’s (2006) oblique force free rotator
Aligned Rotator IS like the oblique object (spindown)


Total Current

Field Lines (with real open flux)


Polar Gap


Slot Gap


Outer Gap


Gaps = local zones

 of charge density < GJ,

Parallel E ≠ 0


Acceleration along B

   beamed photons,

  rotation  lighthouse


Force Free model has no gaps, no parallel accelerator
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Implications for Emission: 


•    Polar cap/flux tube size and shape - noncircular shape, center from 
displaced magnetic axis - polarization - no need to invoke non-dipole B?


•    Electric current magnitude and sign - return currents both spatially 
distributed and in thin sheet (proportion depends on obliquity) - if current 
layers (“gaps”) have parallel potential drops small compared to total 
magnetospheric voltage, 


electric current in and outside gaps is known, averaged on magnetosphere 
transit time (~P/π), to lowest order in Laccel/Lspindown 


electric currents of current layers (and charge starved, quasi-vacuum “gaps”) 
must fit into magnetospheric circuit – known from FF model, to lowest 
order in Laccel/Lspindown 


•    Location of return current layer determined - realistic site/physics for 
outer magnetosphere beaming models of high energy emission – Bai & AS
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Aligned rotator for clarity


Known Current - Huge Effect on      ?


Cartoon - all models have charge 

density = GJ, polar current density  = constant


      “small”       (~108 V/m); same true for outer gaps 

      (geometry different, electrodynamics ~ same)


Magnetic flux


Monopole


Dipole,

RY=RL


Timokhin


Polar current contained within

  distance from magnetic axis, j      const 


!

!
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Existing models: starvation       extracts a  

      beam -


Beam Charge Density almost equals GJ: current = constant - 
small         - ~108 V/m, ΔΦ ~ 1012 - 1013 V


Effect of Current on      (continued)


 local electrostatic tail wags 

the magnetospheric dog!


 Same issue for outer gaps on open field lines: 

starvation gap models (steady) produce 


magnetospheric charge density, not current density, 

but all energy in current!


phenomenological models of  data all based on such 

anti-energetics ideas
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Magnetosphere sets time average jpc to be the Force Free current:

close to monopole


•    


Prospect: Beam Models With Force Free 
Magnetospheric Structure Currents: 


Like a vacuum gap, but          = 0 at crust surface


Probe Structure with Gamma Rays –

 fold geometry with accelerator,

 probe parallel electric field


Gamma Ray Efficiency (LAT)


Cartoon for acute

  rotator:

Obtuse rotator:  positrons

 precipitate, extract electrons;

 polar current = ions 


 
!("

*
,µ) < # / 2

Laccel/Lspindown << 1
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Crab, P=33msec
 Vela, P=89msec
 J0437, 5.76msec 
 J1048, 124msec


A Few Gamma Pulsars (55 seen by FERMI-LAT in year 1)


Most are double peaked, wide separation in rotation phase,

Radio pulse leads two peaked gamma pulse (B sweepback,…)
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Gamma Ray Tests of Existing Gap Models


Gamma Rays Not from Polar Cap


Super exponential cutoff rejected:

  b > 1 rejected at 16 σ


Beamed γ from high altitude

  more promising – tradition                                                        slides from

  has        from starvation,                                                              Romani 

  quasi-vacuum “gaps”


Slot gap fragile to mild magnetic

 anomalies, gravitational bending

 of photon orbits causes pairs to fill slot gap

 gap; Outer gap gets filled by reconnection driven flow (“bulk bursty” flow in

                                        Earth magnetosphere)                           


E
!
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Prospect:  Time Dependent Reconnection/Return j


Sporadic X-Point, Plasmoid formation

occurs continuously


Bucciantini et al


Pairs all come from pole,

 on open field lines

Sporadic reconnection

  moves plasma across

  separatrix 

  non-corotation, time

    variable E at all times


Contopoulos


•  Beamed γ-, X-rays from boundary layer? Hollow cone radio? 


•  Plasma, j flow to star in thin separatrix layer - dynamics in beams,

    Kinetic Alfven waves, boundary layer       - replaces outer gap - AURORA

•  Space charge in boundary current alters polar acceleration(!)

  enhances pair creation (?)

•  Kinetic Alfven wave        extracts ion (electron) return current

•  Torque fluctuations, limit cycles built in (drifting subpulses)? 
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Auroral Model-a radiating accelerator in globally FF 

Earth Auroral oval from 

space – current flow along

B from magnetotail, 
subsolar “nose” – dynamo 
mechanical stress from 
solar wind inertia, coupled 
by reconnection 

Mechanical stress coupled 
to magntosphere by 
reconnection


Electronic camera

Pix of auroral arcs


Emission - lines stimulated

 by downward accelerated 

 e-  beam ΔΦ ∼ Φ  (storms), 

 density >>> GJ (non-starvation)


Jupiter, Saturn similar

Hubble
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Acceleration in Current Sheets: counterstreaming beams in thin

      sheet (like Auroral arcs) - in progress, baby steps; 


Current Sheet = Beams, KAW, thickness ~ c/ωp

E = Eperp + v × B

       + Eparallel + ΔEperp


Particle inertia provides “resistance” in large inductance circuit, voltage ΔΦ       
Φ; but, low density favors Eparallel.  Parallel pressure gradients important in 
current source box = diffusion region
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 

×


Outflow v = c


Reconnection inflow
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  Precipitating electrons (                )

                     positrons (              )


  ! •B > 0

  ! •B < 0

  ! •B > 0

Polar Cap


Bφ


Field Aligned current (counterstreaming beams)

   possibly also fed by pair creation (γγ)


Current flows in a channel, thickness 
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Polar Outflow v = c


Reconnection inflow


Precipitating electrons (              )
  ! •B > 0

Capture rate into diffusion region

  from polar outflow with perp gradient:
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Precipitating electrons cause extraction of ion beam of almost equal

  charge density from atmosphere – local quasi-neutrality

 Total return current in channel = downward relativistic e- 

    + upward ions (protons, if atmosphere has residual H floating at top)

Quasi-neutrality/space charge limited ion emission yields net charge

  density in channel = GJ

If current channel width = skin depth at LC, mapped down dipole field


and 


If lD = skin depth at LC (the smallest possible, << 0.1RL), then
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Story is in medias res ‒ actually in opening paragraph! 

Electron beam goes down (             ); goes up if


  Possible consequences (SPECULATIONS)


Radiation from beams might be curvature if      is macroscopic


Radiation might be synchrotron:


     Counterstreaming beams can be electromagnetically 2 stream unstable

         (narrow channel enforces transverse wave structure, 

           relativistic 2 stream automatically EM)

     ωp ~ ωcyclotron in outer magnetosphere, waves can excite Larmor

         gyration, synchrotron emission

    If waves can escape plasma (fast modes), coherent emission: 

          X-ray – giant pulse correlation, etc., etc.

    Synchrotron gamma rays?

    Outer magnetosphere pair creation? Inverse Compton emission?


At present stage, hard to know specific observational consequences – but

   will come, if slowly  


  ! •B > 0   ! •B < 0

  
!

D
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Follow the Mass Loss: From Whence all the Pairs?


Pulsar Wind Nebulae: Nebular Synchrotron requires

 particle injection    >> Goldreich-Julian current     =cΦ/e 

PAIR PROBLEM

X-Rays:current injection rate (compact, strong B nebulae - Crab, G54,…)

      measured rates ~ existing (starvation) gap rates κ±=    /      ≤104 pairs/GJ


   Radio measures injection rate averaged over nebular histories, κ± > 105


!N
±

!N
±

!N
GJ

!N
GJ
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PWN Name κ± Γw Φinit(PV) Age (yr) 
Crab  > 106  5 x 104 100 955 
3C58  > 105.7     3 x 104 15 2100 
B1509  > 105.3     1 x 104 121 1570 
Kes 75  > 105     7 x 104 22 650 

  Low σ = B2/8pm±c2n±Γw at termination      Γw = eΦ/2m±c2κ±


From one zone evolutionary model of observed spectrum including radio

(with Bucciantini,  Amato: xxx1005.1831) – injection spectrum convex, γ-1.5   γ-2.3 


Crab

3C58
 PSR B1509/MSH 15-52
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Why so many Pairs (continued)


Pulsar death line (                            ) models need dense (         ) 

      pairs over all         space 


Starvation electric field polar caps (charge density controls current)

   do make a few pairs at low voltage (plenty at high Φ), but not dense -

                                              shorting out electric field not clear -

                                              more pairs needed (or FF-MHD not

                                              applicable) - same lesson as from PWNe
-


Hibschman & JA


Many (not all) radio emission ideas need

 dense (large multiplicity) pairs

All transfer effects need dense pairs -

  something is missing

 “multipole” fields = tipped offset dipole?

  gravity bending of photon orbits, 1 pole big B

  pair yield – magnetic anomaly must be mild,

  radio pol says B* close to dipole r~R* - core


Hibschman & JA 01
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Possible flaw:  All models assume density >> GJ in 

   current carrying plasma have zero parallel E - 

   NOT  TRUE – aurora 

Shorting out Eparallel at surface of first pair creation 
assumed by everyone, good idea (?) in steady flow,

Perhaps not so in unsteady flow?  


• Current + pairs becomes time dependent (? GJ, 
Alber et al, Levinson, others), averages to FF J?

electric field averages to small starvation value? – 

PC heating? Large Eparallel over greater length: more 
pairs (?)


So far, not so: Timokhin PIC + Monte Carlo hybrid) 
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Low σ (Γw → σ0) in unconfined wind requires magnetic dissipation somewhere


Ideal MHD, poloidal field lines almost radial:


    acceleration parallel to velocity, inertial force for change of speed

      proportional to longitudinal mass mγ3:


€ 

ρcβ ∂
∂r
(γcβ) = ρc 2 β ∂γ

∂r
+ γ

∂β
∂r

 

 
 

 

 
 = ρc 2γ 3

∂β
∂r
~ − ∂

∂r
B2

8π
=
B2

4πr

Magnetic Spring > Inertia: 


€ 

1>
ρc 2γ 3(∂β /∂r)
B2 /4πr

= γ 2
4πρc 2γ
B2

r ∂β
∂r

≈ MF
2 ⇒

Unconfined Relativistic MHD winds accelerate to


€ 

MF ≈1 not σ =
σ 0

γ
=1

 

 
 

 

 
 ,⇒ γ∞ ≈σ 0

1/ 3

(not γ∞ ≈σ 0)

Observations (models) require stronger, non-radiative

 (equatorial) acceleration for r >> RF ~ 102 RL
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Observed PSR = oblique rotators


Equatorial Current Sheet
 Frozen-in Transmission Line

Inner Wind: Magnetically Striped


Force Free Simulation of 

i=60o Rotator (Spitkovsky)
 i=60o - topology = aligned rotator


(Bai and Spitkovsky)


Current Sheet Separating Stripes

(from Bogovalov’s analytic model)


Equatorial

 cross-section


Meridional

 cross-section
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If wrinkled current dissipates, striped field dissipates,

  magnetic energy coverts to flow kinetic energy, 


“heat” &  radiation, perhaps strong waves - partition?


Stripe Dissipation Kills Bφ, restores aligned rotator with thick CS  


Sheet separation = RL, proper wavelength = 2Γω RL


TS at many RL (109 RL for Crab)

Ideal MHD: Intersheet σ >> 1 conserved


Current sheets’ dissipation:

   1) Anomalous resistivity forms,


       plasma in sheets heats, current 

       channels widen, merge at r << RTS


   2) Reconnection (also needs resistivity/

        inertia) collapses field onto sheets,

        energy goes to hot islands, sheets

        spread and merge, devour field 


        upstream of TS

   3) Mode conversion - sheet converts to


       relativistically strong EM waves in 

       flow frame


Plasma pressure in sheets causes wind 

     acceleration as Βφ drops


From Coroniti 1990


Sheet spacing: RL‒ cold between sheets
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Maximum dissipation
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Heating: sheet expansion in wave frame = wind rest frame sheets spread at 
speed vs < c; sheets expand, merge, σ 
   “0”


sheet separation in wave frame: λ/2 = πΓwindRL , 


Merger time in PWN frame:


Flow time from star to TS in nebula frame at r = RTS: TTS = RTS/c

Sheet merger occurs before wind terminates only if Tm < TTS:


Low σ wind at TS


Sheet dissipation upstream of  TS  may work if 


“fast” sheet dissipation if “slow”, dense wind: Γwind << 106,
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26 

2H


Sheets swallow stripes: 


Simplified Sheet Structure


(Crab)
 only if 
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l =2πΓwRL << Γwr


Sheets Interact - Two Neighboring Stream (Weibel-like) 
instability


Dynamics of plasma inside thin sheets as if each sheet 
is unmagnetized; intersheet medium is high σ MHD                    


                     - sheet current = runaway beam 


Rapid Dissipation Mechanism: Anomalous Resistivity 
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Two Symmetric Sheet Instability
 Alfvenic magnetic 
ripple at each sheet 


Growth Rate 

2 symmetric sheets = purely 

growing in proper frame


Intersheet plasma MHD - sheets

  couple through Alfven waves

  modified by inhomogeneity


Wave vector parallel to B = 


 
!Bx (y) " exp i k

!
y #$t( )%

&
'
(

   
2! / k

!

j0 x δBx force compresses

each sheet’s surface 


density into filaments

parallel to j0 


Surface current filaments

    reinforce δBx - 


currents flow in 

unmagnetized sheets’ cores


Weibel instability in flatland
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Proper Growth Rate (vA=cβA, vbeam=cβb) 


Sustained Weibel turbulence 

inside current sheets in wind
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Weibel in pairs, colliding shells (shock simulations)


[x,y,z]=c/ωp


Weibel scatters particles


Large 2D shock PIC simulation

Labeled plasma particles show scattering


Current carriers scattering nonresonant, tscat ∝ p2 ⇒ runaway beams

     Γbeam may be as high as qΦ 


!
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Alternate model – currents are in main body of sheet plasma, not very relativistic, 

  dissipation = internal Instabilities of Sheets:  Collisionless Tearing, Drift Kink (stronger for pairs)


Relativistic Harris-Hoh Equilibrium instead of unidirectional charge neutralized beam


Counterstreaming electrons/positrons in channel

 drives kinking perpendicular to B


  

!
c
=
"

c
= #

c

$1
=

m
±
c

2
%

w

e&

r

2'R
L

P

Zenitiani & Hoshino initial value PIC

  (current stops at late time, not true for PSR sheet)
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Anomalous Resistivity in Sheets & Sheet Merging (beam model)


   

(δB)2 ≠ 0 ⇒  scattering of beam particles ("collisions")

νc = δωc( )2 τac = Γ(Γτac ) = KcΓ, Kc ≥ 1 

Conductivity inside sheet : σbeam =
ωp,beam

2

4πνc

,

Magnetic Diffusivity 

νm =
c2

4πσbeam

=
1
3

cHαbeam
H
λ











2/3

,  

λ=2πΓwindRL =  stripe wavelength, DBohm =
1
3

cH since H ≈ rLarmor

Sheet Heating: Non-MHD electric field Ebeam = Jbeam / σbeam  entropy not conserved,

Γ
wind

2 r d
dr

H
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Heating accelerates the wind

Sheet Heating: Non-MHD electric field Ebeam = Jbeam / σbeam  entropy not conserved:

H =
2T
eB

, Γ
wind

2 r d
dr
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Energy Conservation: 
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Similarity Solution:
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Current sheet merger complete, striped B field ~ gone when 4H=2πΓwindRL  at r = Rmerge.   

Rmerge =
49

36π2αbeam

ER
Mc2









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2

RL = (Crab) 5 ×108

αbeam

1040 s −1

N
±

RL < Rshock ≈ 109RL

αbeam = 3KcβA(k

λβbeamβA)2/3 ~1(?) = main "wiggle" parameter: Kc ~1?  PIC sims for process

N > 1040 s −1 really needed for feeding radio emission? 
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Radiation from Wind


Beam model has Relativistically hot current sheets: proper temperature ~ γbeammbeamc2 large


Synchrotron emission (observer frame):


Optically thin - yes, except perhaps at highest energy (gg opacity unknown)


Emission from r ~ Rmerge in optical-UV - unpulsed emission, also faint, Bf small


Tev, GeV emission might be pulsed (inner wind), emission regions can be smaller

    than rΓwind

2, therefore radiation in phase with sheet? - alternate to SG, OG 

    magnetospheric beamed emission [old idea (Michel/Arons), recently worked 

    on by Petri and Kirk); there are upper limits on TeV pulsed emission that may 


    challenge model (or allow detection of wind emission - even unpulsed

    flux might be at energies where nebular flux weakens.)




   high energy from inner wind (Bφ enclosing sheets large)
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Termination Shock Location


Termination Shock Structure

(from del Zanna et al 04)


Low density 

pairs, beam,

unmagnetized

shock


High density 

pairs, mildly

magnetized

shock


B strength with latitude -

Unmagnetized in equator


Chandra Movie


Equatorial beam compressions Movie (AS+)


Termination Shock = Magnetic Sandwich 

MHD Shear and Vorticity Instability Movie (SK+)
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Unmagnetized shock Movie (Spitkovsky 08) 
PIC Simulation of Weibel turbulence mediated shock 

2.5D relativistic PIC, electrons-positrons, B0 = 0, Γ=15; 3D (Spitkovsky & JA) similar  
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Detection of self-consistent Fermi acceleration (Γ1 = 15, pairs) 
Movie - Trace particles that end up in the tail - scattering weakens at large γ, particles lost to tail. 
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Density, t=8400/ωp

B1/2, t=8400/ωp


1D density, B1/2

   t=8400/ωp 


Pflow-x


Pperp-x


Pflow-Pperp slices


Particle spectra

 in slices 


Downstream particle spectra: Maxwellian +

 exponentially cutoff power law (biMaxwellian,


 growth of power law component)


Labeled particles gaining energy


  dN / dγ ∝ γ −p , p ~ 2.4

Large simulations (50,000x800 cells, 5000x80c/ωp±)-
suprathermal particles (Fermi acceleration) well developed 
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Magnetized Transverse Pair Shock (higher latitude):

    Pairs, unidirectional B, 3D, colliding shells, σ = 0.1


Density in B-v plane Movie


Px-x

<vx>


Py-x

 B0


Pz-x

 E0


3D Phase space 


Complete Thermalization – rapid

 relativistic synchrotron emission and self-absorption 

(synch thermalization ~ BH disks, but collective) -  

true for all superluminal ΘBN  


Log f(E)


E
 Sironi & Spitkovsky 09
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Turbulence too weak, wrong kind (not scattering) to support DSA

   in <σ> > 0.01 flow, = latitude average in MHD nebula models 


Pulsar Wind Toroidal Field entirely across flow; composition = pairs.

    Does shock acceleration fail for best studied/most easily studied

      relativistic outflow?


Conclusion applies only if upstream B not

 structured – high mass loaded, low Γw wind has sandwich geometry


J(beam) 
Bφ


Bφ




J. Arons:  Aspen Gamma Sources 2010


Clue:  MHD nebular models require unusually weak field in 

   equator, plasma + beam flow in equatorial current sheet

   allows formation of σ < 10-3 shock, Fermi acceleration 

   possible in equatorial outflow: feeds torus, if accel to PeV


(needs turbulence not demonstrated in σ < 10-3 PIC),

  spectrum OK for optical, X-ray, gamma ray from 

  nebulae

Flat spectrum radio emitters accelerated by cyclotron

  resonance in higher σ zones at higher latitude?


electrons


positrons


beam= “protons”


Amato & JA 1D PIC – hasn’t yet been done in 2D and 3D
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Alternative: Macro-turbulence from unstable flow at shock gives fast 2nd 

     order Fermi (vA ~ c/3)


B     from Camus et al 2009      pressure

If turbulence cascades to short wavelength, fast 2nd order 

  Fermi acceleration may accelerate radio emitting 

  spectrum from post shock pairs (??)
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  Force Free Currents - Charge Neutrality conflicts with j

       New Polar Accelerator Models - short time variability?

  Closed/Open Magnetosphere - Reconnection?

     Cross field transport in closed zone

     Plasma transfer from open to boundary layer, closed

         field - n < 3?

     Return current formation and plasma        - kinetic Alfven waves/beams?

     Torque noise, subpulse phase variations

     Boundary layer acceleration, HE photon emission

     Enhanced Polar Pair Creation (?)

  Wind Current Sheet Dissipation

      High σ low σ?  Anomalous resistive decay of stripes in mass loaded,

          low(er) Γw ~ 104; Current in equatorial current sheet = runaway

          beam? (cyclotron acceleration at TS?)         

  PWNe termination shocks – Magnetic Sandwich Geometry

     unmagnetized in equator (“sandwich filling”): Fermi acceleration (O,X,γ)

     cyclotron acceleration at higher latitude: flat radio spectrum? 

     turbulence acceleration in equatorial TS: flat radio spectrum?


Conclusions: Pulsar Problems and Prospects
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Variability: 


All emission models are steady in co-rotating frame


  All radio emission is variable in the corotating frame


Subpulses - T ~ magnetopsheric transit time ~ P/π

  unstable magnetospheric  reconnection? J mismatch?

Micropulses ~ polar transit time                                  

          virtual cathode fluctuations?                             s

Nanopulses - intrinsic time scale of radio

                    emission turbulence?


Needed - O, X, γ subpulse, micropulse observations!

Needed - plasma dynamical models in Force-Free 

                 current flow setting - mostly computational  



