Collisional mechanism for prompt GRB emission

Andrei M. Beloborodov Columbia University

GRB jets: -- relativistic

-- heated

GRB jets: -- relativistic

-- heated

Passively cooling jet: spectrum peaks near 1 MeV, exponential cutoff

GRB jets: -- relativistic

-- heated

Possible heating mechanisms:

1) Dissipation of magnetic energy

2) Internal shocks

3)Collisional heating

WANTED

- -- Efficient electron heating
- Nonthermal radiation spectrum with a peak at ~ MeV

Heating mechanisms: I. Internal shocks

- II. Magnetic dissipation
- **III.** Collisional dissipation

(a) Optically thin synchrotron

(b) Optically thick Compton ("photospheric")

Observations favor (b):

- hard spectral slopes in many bursts
- preferential position of the spectrum peak near 1 MeV
 - + photospheric emission is released at small radii, consistent with observed fast variability

Photospheric ≠ thermal !!

Kouveliotou et al. (1993); Preece et al. (2000)

Photospheric emission

Misconceptions:

thermal spectrum

too small radius, ruled out by observed GeV emission

- \rightarrow nonthermal
- → additional GeV source at large radii

Sequence of mini "big bangs"

Variability: unsteady jet

Nonthermal spectra => heated jet

Baryonic jets contain neutrons \rightarrow two-fluid flow $\Gamma_n \neq \Gamma_p$ Derishev et al. 1999 Bahcall, Meszaros 2000 Fuller et al. 2000 Meszaros, Rees 2000

n - p collisions peak at radius $R_n \sim 0.1R_*$

 \Rightarrow protons are hot in the subphotospheric region

Electron heating I: Coulomb collisions

(Beloborodov 2010)

Electron heating II: inelastic nuclear collisions

⇒ Injection of e^{\pm} with energy ~ $m_{\pi}c^2 \approx 140$ MeV

(Paczynski, Xu 1994)

Nuclear collisions:

⇒ Injection of e^{\pm} with energy ~ $m_{\pi}c^2 \approx 140$ MeV

(Paczynski, Xu 1994)

Nuclear collisions:

⇒ Injection of e^{\pm} with energy ~ $m_{\pi}c^2 \approx 140$ MeV

(Paczynski, Xu 1994)

 $\Rightarrow e^{\pm} \text{ cascade radiating}$ almost all e^{\pm} energy

> (Svensson 1987; Lightman, Zdziarski 1987)

Radiation from collisionally heated jets

Three regimes of GRB jets

A. Steady jet
Γ=const
Passive cooling
(no heating)

- B. Moderate variability δΓ/ Γ<2
 Hot protons heat thermal electrons via Coulomb collisions
- C. Strong variability δΓ/ Γ>2 Pion production, injection of 140-MeV e+-

Summary

Robust **collisional** heating operates in baryonic jets, converting > 30% of jet energy to escaping radiation. Its theoretical spectrum is consistent with observations

Collisional heating peaks at radii ~ 0.1 R*.

Photospheric emission \neq thermal emission (!)