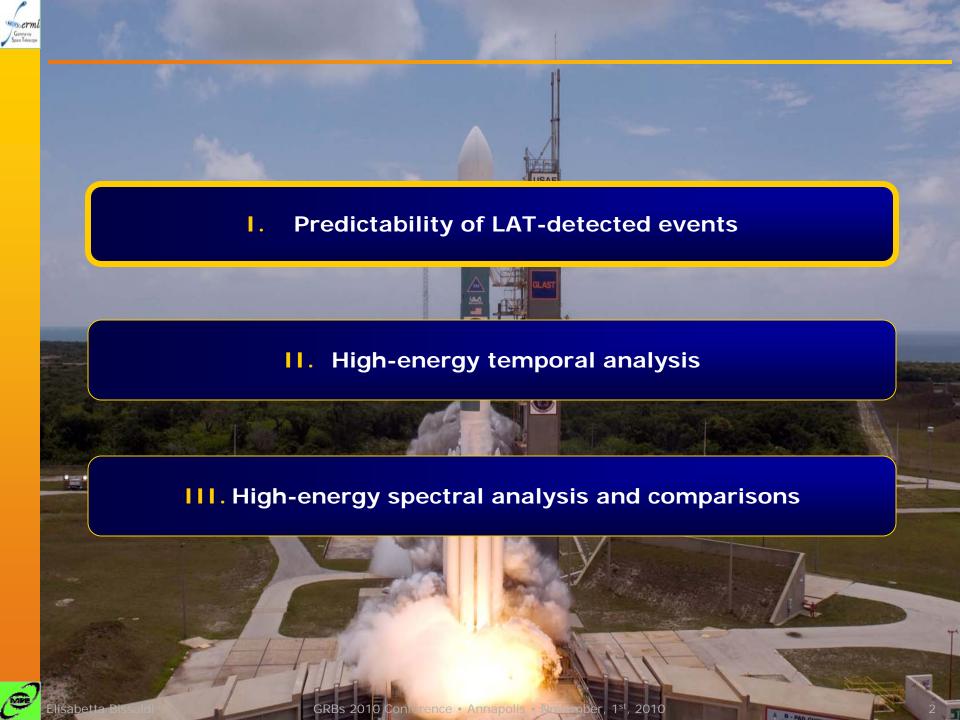


The 50 Brightest and Hardest GRBs Detected with the Gamma-ray Burst Monitor on Fermi

Elisabetta Bissaldi


On behalf of the Fermi GBM Team

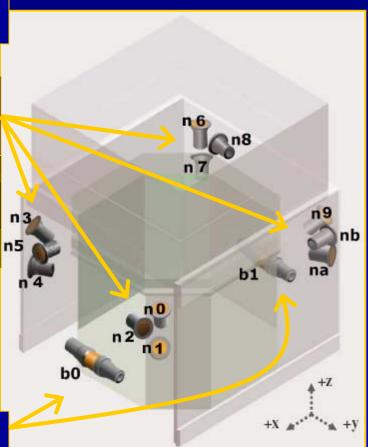
Collaborators at MPE: A. von Kienlin, J. Greiner, S. Foley, D. Gruber, A. Rau, R. Diehl

External Collaborators: P. N. Bhat, M. S. Briggs, J. M. Burgess, V. Chaplin, V. Connaughton, G. J. Fishman, L. Gibby, M. Giles,

A. Goldstein, S. Guiriec, A. J. van der Horst, A. S. Hoover, R. M. Kippen, C. Kouveliotou, S. McBreen,

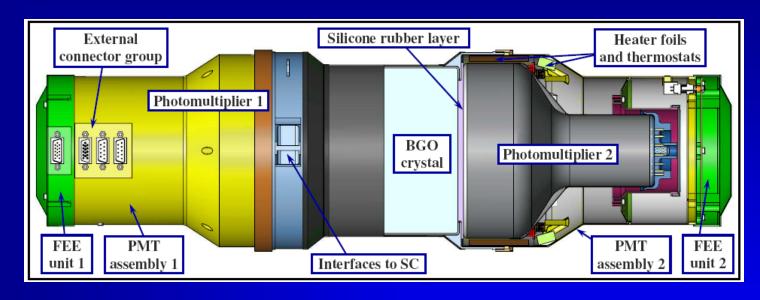
C. A. Meegan, W. S. Paciesas, R. D. Preece, D. Tierney, C. A. Wilson-Hodge

The GBM-BGO detectors


GBM

12 Nals

(location & low-E spectrum)



Garma-ray Space Telescope

The GBM-BGO detectors

GBM

12 Nals (location & low-E spectrum)

2 BGOs (mid-E spectrum)

2 Bismuth Germanate Detectors

- Diameter: 12.7 cm (5" x 5")
- Thickness: 12.7 cm (5")
- Energy range: ~200 keV ~40 MeV

BGO bright bursts selection criteria (1)

- Selection from the set of <u>253 GRBs</u> collected during the first year of GBM operation
- 1. First (coarser+automated!) selection
 - Bursts with more than 80 counts/s over background in at least one BGO detector over the full energy range (250 keV-40 MeV)
- 2. Second (refined!) burst selection
 - Bursts with signal above 3 σ in the BGO CTIME light curves
 - ► [CTIME data have a <u>64 ms temporal resolution</u> during burst-mode and spectral resolution of <u>8 energy channels</u>]

Example of BGO CTIME energy channel boundaries for GRB 090227B

BGO	Energy	Interval	
Ch. #	Start (keV)	Stop (keV)	
0 1 2 3 4 5 6 7	$\begin{array}{c} 113.25 \\ 451.60 \\ 973.33 \\ 2119.65 \\ 4591.62 \\ 9757.00 \\ 21463.0 \\ 37989.0 \end{array}$	$\begin{array}{c} 451.60 \\ 973.33 \\ 2119.65 \\ 4591.62 \\ 9757.00 \\ 21463.0 \\ 37989.0 \\ 50000.0 \end{array}$	150-500 keV 0.5-1 MeV 1-2 MeV 2-5 MeV 5-10 MeV 10-20 MeV 20-40 MeV Overflow

BGO bright bursts selection criteria (2)

- Total number of GRBs included in this analysis: 52
 - ~20% of all bursts detected during the first year of GBM operation
 - All LAT detected burst (in the first year!) are in the sample

Table 1
Basic properties of 52 bright GRBs

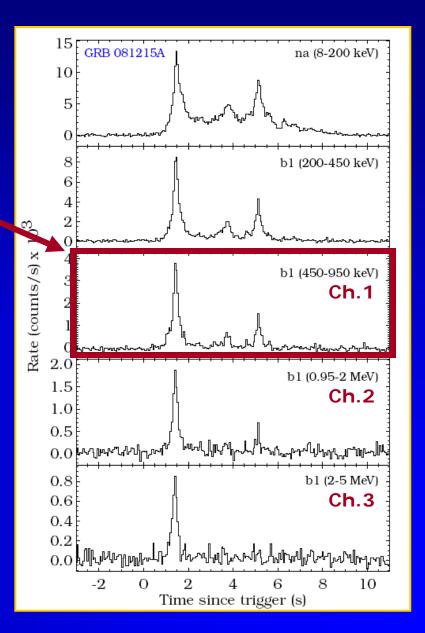
GBM GRB Trig. Time NaIBGO LAT Angle Data Time Interval^a Trig. # Name (T_0, MET) Det. Det. (deg)Type Start Stop (1)(2)(3)(4)(5)(6)(7)(8)(9)080723.557 080723B238512142 CSPEC 0.0044 0 107 60.161CSPEC 080723.985 238549063 5.20 113 -2.30450.945 6.7 TTE 080725.541 50 -0.0640.384238683564 TTE125 080802.386 080802 239361311 4.5 0 -0.0640.448080807.993 0,1,274CSPEC 080807 239845833 0 -1.37621.152080816.989 080816B 240623035 $\dot{b}, \dot{7}$ 70 TTE -0.0644.480240637931 CSPEC 080817A 2,5 0 80 080817.1610.00460.417CSPEC 080825C 241366429 60 0.00425.216080825.5939.a080905A242308736 28 TTE080905.4996.7-0.0641.02432 CSPEC 080906.212 080906B 242370312 0.1.30 0.0043.712 CSPEC 080916C 243216766 0 52080916.009 3.40.00470.145CSPEC 244060556 6,7 25.856080925.775080925380.004081006 TTE -0.3843.392 081006.604 244996175 0,316 CSPEC 40.321 081009.690 245262818 8,b 96 -2.688TTE 081012.045 081012B245466323 66 -0.1280.768 9,aTTE6,9 081024.891081024B246576161 16 -0.1280.128CSPEC 081101B5.21168.704081101.532247236325 0.003TTE 081110.601 081110 248019944 7,8 67 -0.19212.096081121.858 081121 248992528 a,b CSPEC 0.003 21.504140 21 (ARR) CSPEC 25.600 081122 0.10 0.002081122.520249049693 CSPEC 081125.496a,b 081125 249306820 1260.00310.368 081126.899 081126 249428050 CSPEC -12.16040.065 0.118 081129.161 081129 249623525 a,b 118 CSPEC -2.94428.800 081207.680 081207 CSPEC 100.354 250359527 9,a56 0.003081209 8.b 107TTE-0.0560.256081209.981250558317 081215.784081215A 89 CSPEC 7.424251059717 9.a 0.004081216.531 TTE 081216 251124240 8.b 99 -0.1280.960081224.887 081224 251846276 6,9 17 (AAR) CSPEC 0.002 16.544

Abdo et al. ApJ,707,580 (2009)

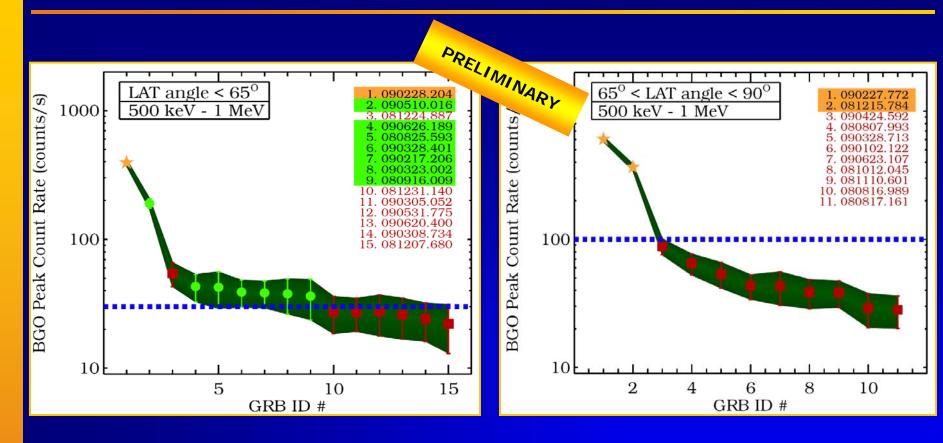
Science,323,1688 (2009)

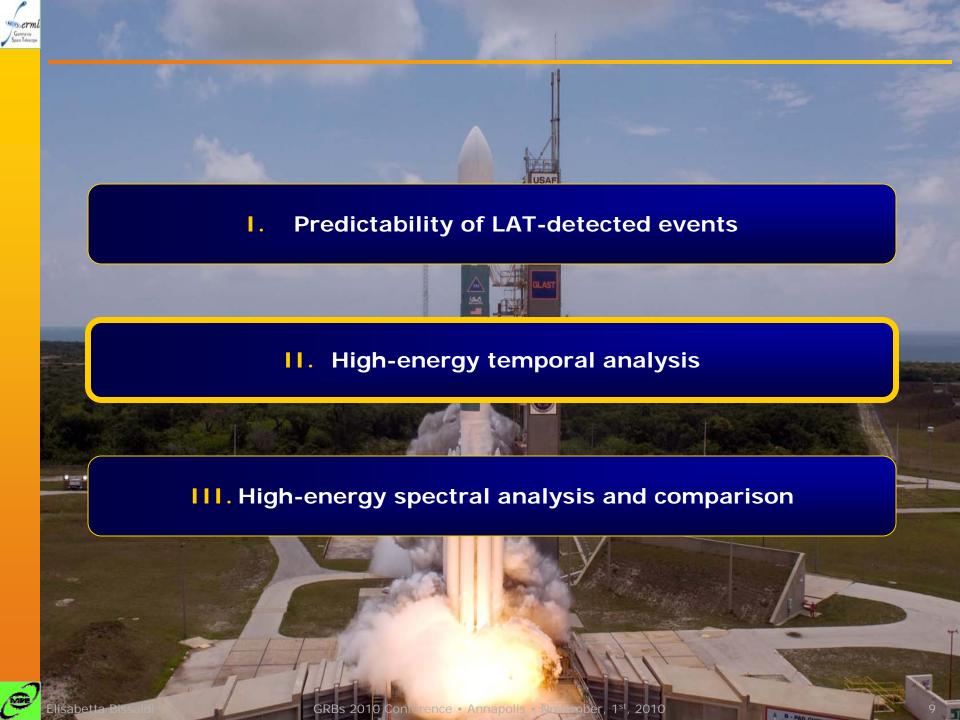
ApJ,712,558 (2010)

McEnery et al. GCN 8684 (2008)

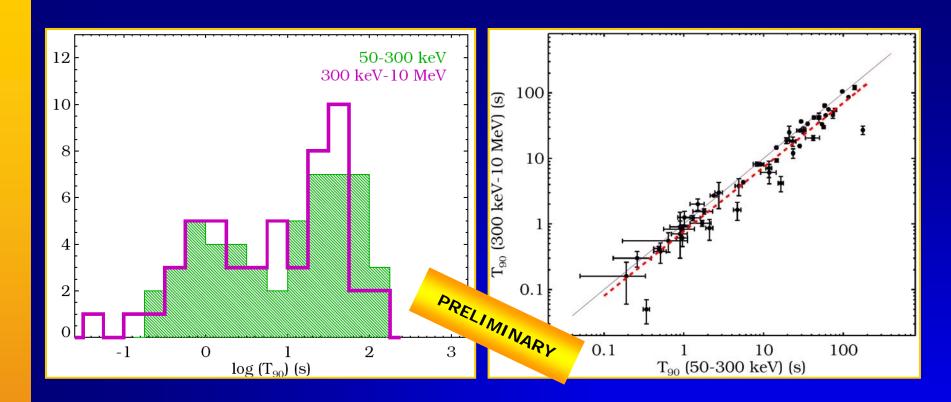

Elisabetta Bissaldi

BGO bright bursts selection criteria (3)

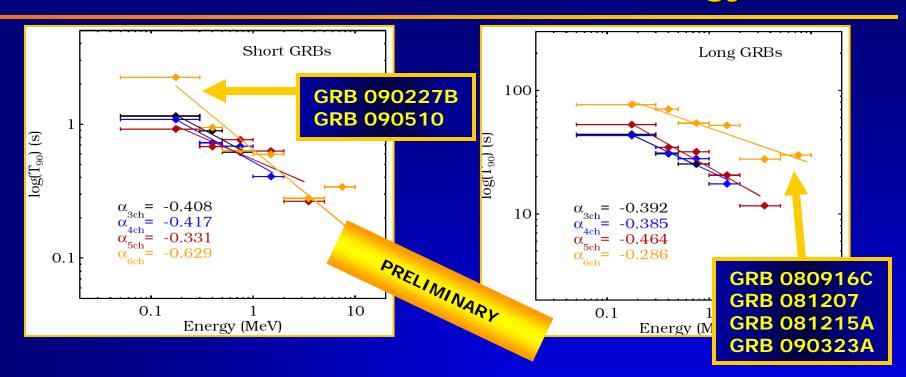

- Further subdivision according to the detection significance in different energy channels
 - 52 GRBs in Ch.1 (~0.5 1 MeV)
 - 19 GRBs in Ch.2 (~1 2 MeV)
 - 10 GRBs in Ch.3 (~2 5 MeV)
 - 6 GRBs in Ch.4 (~5-10 MeV)
- GRB 081215A: Example light curve
 - Top panel: 8–200 keV band (Nal detector)
 - Other four panels: BGO light curves in different energy ranges
 - Marginally detected by the LAT (86° to the boresight)
 - No directional nor energy info



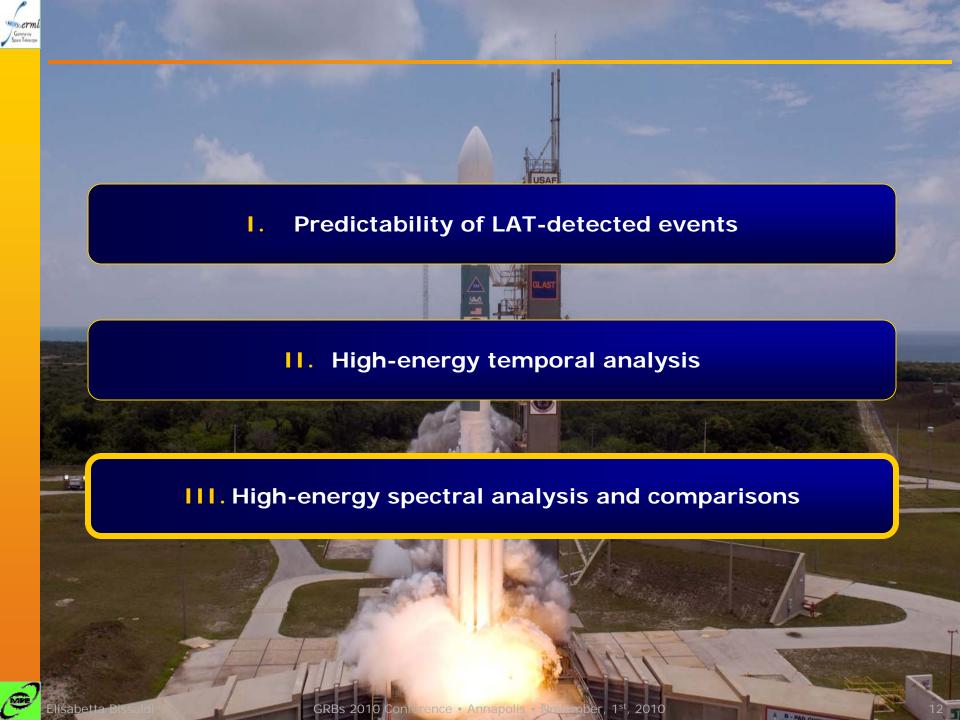
LAT predictability


- BGO peak count rate measured in channel 1 (~500 keV ~1 MeV)
 - 15 GRBs inside the LAT FoV
 - 11 GRBs at the edge of the LAT FoV
 - Green circles, orange stars and red squares represent firm, marginal or missing LAT detections
 - Blue dotted line marks a "detection limit" which was arbitrarily placed at 30 and 100 counts per second in the measured peak count rate.
- This analysis enables selection of good candidates for potential LAT detections
 - Project is ongoing to implement the code into the GBM FSW

Duration distributions

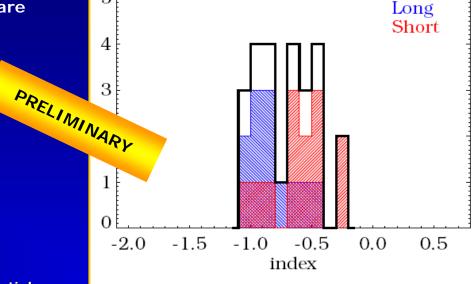


- 17 short, 35 long bursts in the sample
- Duration bimodality in the 50-300 keV distribution is clear
- T90 (50–300 keV): Short bursts: ~1.2 s, Long bursts: ~33 s
- T90 (300 keV-10 MeV): Short bursts: ~1.0, Long bursts: ~25 s
 - Narrower distribution
 - Bursts at higher energies tend to be shorter



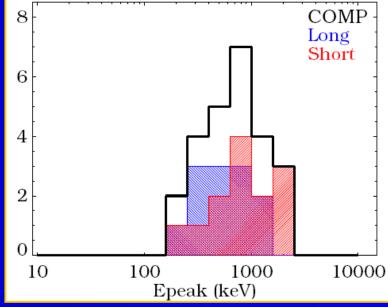
Evolution of duration with energy

- Followed the approach described by Richardson et al. (1996)
 - BATSE 3B, 72 bursts, 25-50 keV, 50-100 keV, 100-300 keV, and >300 keV.
- Utilized broader BGO energy coverage: adding five energy channels, namely 300-500 keV, 500 keV-1 MeV, 1-2 MeV, 2-5 MeV, and 5-10 MeV
- Power law fit (T90 = AE^{α})
 - Central energy value used to represent each energy channel in the fit
- Results for long and short bursts computed separately
- Fit performed for the <u>mean T90 values</u> computed from subsets of bursts detected in 3-6 energy channels



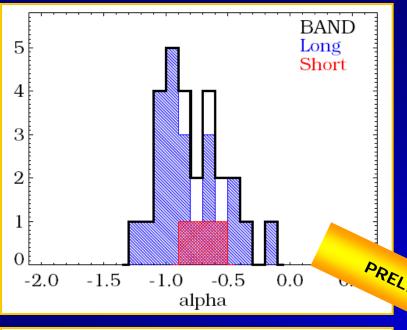
Comp results

5

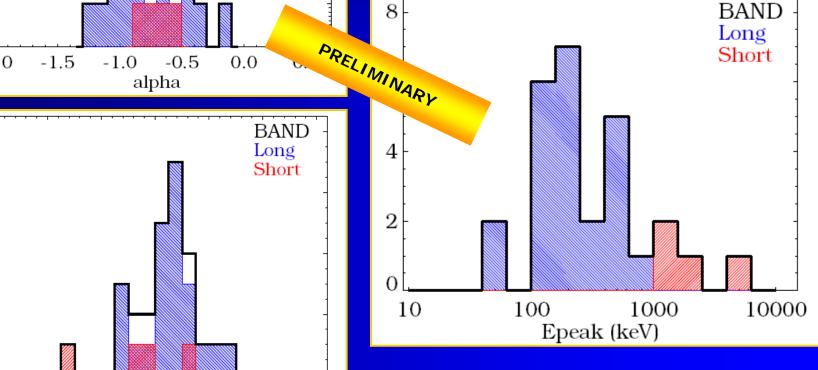

 Time-integrated spectra of 25 bursts are best fit with a Comp model!

COMP

- Comptonized (Comp) model
 - Low-energy power-law with an exponential high-energy cutoff, which is equivalent to the Band function with β → -inf


→ 75% of all short bursts in the sample are best fit by a Comp model (13 out of 17)

Band results



-2.5

beta

-2.0 -1.5

- Time-integrated spectra of 27 bursts are best fit with a Band function
- Only 4 out of 17 short GRBs are best fit by Band (+evidence for extra component!)
 - Softer beta values
 - Higher Epeak values

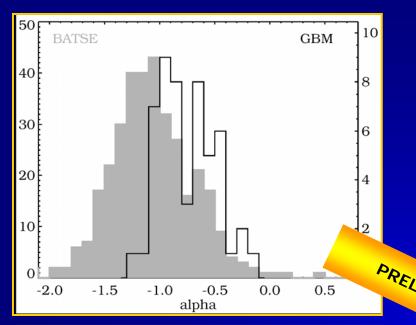
Elisabetta Bissaldi

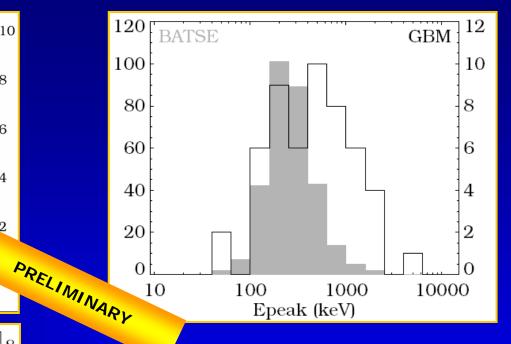
-3.5

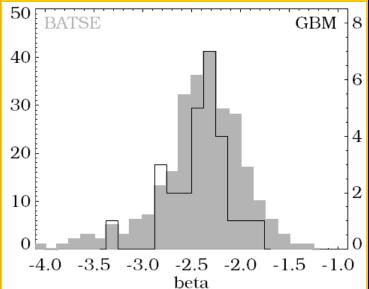
-3.0

8

6


4


2


-1.0

GBM vs. BATSE comparison

- Comparison with BATSE bright bursts results (Kaneko et al. 2006)
- Increasing the space of study towards short and hard bursts with higher Epeak values (by selection!)
 - 30% of the sample are short bursts, unlike the Kaneko sample (only 4%!)
 - See Guiriec et al., Ghirlanda et al., Nava et al. (2010)

Summary

- GBM is an excellent tool to study in detail bright shorter and harder GRBs as well as longer ones
- We can use the GBM data to predict LAT detections
 - Peak count rate measured between 500 keV and 1 MeV with the mostly illuminated BGO detector
- We have extended the duration vs energy relationship up to ~10 MeV; we confirm the earlier trend of T90 α E^-0.4
- Most Integrated spectra of bright short GRBs are best fit with a comptonized model. We find that the ones associated with an extra component are best fit with a Band function.
- The hardness selected sample of GBM differs from the BATSE bright burst sample.

