GRBs in the SWIFT and Fermi era: a new view of the prompt and early afterglow emission

Francesco Massaro Harvard - SAO - CfA

Annapolis April 2010 Thanks to: J. Grindlay, R. Preece

GRBs Spectral Energy Distribution

Observational evidence:

the SED is generally curved (convex and broadly peaked)

Cohen et al. 1997

The Band Function

Band Function

Tavani et al. 1996

The SED shape is well described by this phenomenological model

$$F(E) = \begin{cases} F_0 \left(\frac{E}{100 keV}\right)^{\alpha} exp\left(-\frac{E}{E_0}\right) & E \le E_b \\ F_1 \left(\frac{E}{100 keV}\right)^{\beta} & E \ge E_b \end{cases}$$

Band et al. 1993

In the Fermi ERA...extrapolating the Band Function...

Band et al. 2009

Only 5-10% GRBs detected in the LAT during 1° year of Fermi obs.

PREDICTIONS ??

now we are in agreement...

$$F(E) = \begin{cases} F_0 \left(\frac{E}{100 keV}\right)^{\alpha} exp\left(-\frac{E}{E_0}\right) & E \le E_b \\ F_1 \left(\frac{E}{100 keV}\right)^{\beta} exp\left(-\frac{E}{E_{sc}}\right) & E \ge E_b \end{cases}$$

....so 5 parameters to define the Band function

The thermal emission

Physical background !!!

$$N_{\rm E}(E,t) = A(t) \; \frac{E^2}{\exp[E/kT(t)] - 1} + B(t) \; E^s$$

My view...it still has some problems

- 1. No signatures exp. cutoff
- 2. Powerlaw always necessary
- 3. Extrapolation of the powerlaw
- 4. No BB photon index at low energies
- 5. Connection low-high energies
- 6. It cannot describe all GRBs
- 7. No high values of curvature

The log parabolic spectral shape

Energy dependent photon index $\Gamma(E) = a + 2 \ b \ log(E/E_0)$ Massaro, Grindlay & Paggi 2010

Log-Parabolic Spectral distribution

A log-parabolic spectral distribution is a distribution that is a parabola in the logarithm, and corresponds to a log-normal distribution.

S(E)=Sp 10^{-b} (Log(E/Ep)²)

b: curvature at peak E_p: peak energy S_{p:} SED height @ E_p

 $F(E)=F_0(E/E_0)^{-(a+b \log(E/E_0))}$

b: curvature at peak a: spectral index @ E_0 F_0 : normalization @ E_0

The log parabolic spectral shape

Log-parabolic means log-normal

$$y = \frac{1}{x} e^{-ln^2 x}$$
$$y = \frac{1}{x} e^{-(lnx)(lnx)}$$
$$y = \frac{1}{x} x^{(lnx)}$$

$$ln(y) = -ln(x) + ln^2(x)$$

Parabola is the natural way to approximate functions around a minimum or a maximum --> e.g. Taylor series

The physics!!!

Since Kardashev 1962

$$\frac{\partial}{\partial t}N(\gamma,t) = \alpha_1(t)\frac{\partial}{\partial \gamma}[\gamma^2\frac{\partial}{\partial \gamma}N] + \frac{\partial}{\partial \gamma}[\alpha_2(t)\gamma + \beta(t)\gamma^2]N - \alpha_3(t)N + q(\gamma,t)$$

The general solution of the kinetic equation is well approximated by a log-parabolic function when:

- 1. Not only Systematic but also stochastic acceleration
- 2. Radiative cooling + adiabatic expansionetc. etc.

$$log \frac{N(\gamma, t)}{N_o} = -s(t)log(\gamma/\gamma_o) - r(t)log^2(\gamma/\gamma_o)$$

Similar ideas: Ellison et al. 2001, Pelletier et al. 2003, Stawarz & Petrosian 2006.

The log-parabolic synchrotron spectra

b (BL Lacs): 0.05 - 0.5

b (GRBs): 0.2 - 1.2 (time resolved spectra)

 $N(\gamma)=N_0(\gamma/\gamma_0)^{-s-r\log \gamma/\gamma_0}$ Curvatures b ~ r/5 $F(v)=F_0(v/v_0)^{-a-b \log v/v_0}$ 10 GRB 910601 synchrotron emission from a log-parabolic PEI 10 $(erg \ s^{-1} \ cm^{-2})$ 10 10 ۴'n 10 10 100.01 0.1 10 100 E (MeV)

Something on the acceleration

Fermi acceleration mechanisms

$$\gamma = \gamma_0 \left(1 + \frac{\Delta \gamma}{\gamma} \right)^k$$

$$\log N_{el}(>\gamma) = B - \Gamma \log \gamma$$

Slope of the particle energy distribution

$$\Gamma = -\frac{\log[1 - P_{es}]}{\log(1 + \Delta \gamma / \gamma)} \approx 1$$

$$n(>\gamma) \propto \gamma^{-1}$$
 (integral form),
 $n(\gamma)d\gamma \propto \gamma^{-2}$ (differential form).

Cosmic rays...

Something else on the acceleration "Stochastic/statistical" acceleration $P_{ret} \propto \frac{\gamma_0}{2}$ $\Gamma = -\frac{\log[1 - P_{es}]}{\log(1 + \Delta \gamma / \gamma)} \approx 1$ Assuming Slope of the particle energy distribution

FIG. 3.- Spectrum of particles escaping downstream (thick line) as a function of momentum after 20 cycles for $\Gamma_r = 100$; the thin lines show the spectra of particles escaping downstream after each cycle

 $\Gamma = -\frac{\log(\gamma/\gamma_0)}{\log(1 + \Delta\gamma/\gamma)}$

Log-parabola $\log N_{el} = -r \log^2(\gamma/\gamma_0)$

Another example Lemoine & Pelletier 2003

Synchrotron scenario

GENERAL ASSUMPTIONS:

Neglect 2° order Fermi acceleration Assume continuum injection Assume a powerlaw as initial condition Fast or slow radiative cooling Assume no re-acceleration e.g. turbolence

Sari, Piran & Narayan 1998

Synchrotron cooling time too fast...

Adiabatic expansion

$$\frac{dE}{dt} = \left[\left(\frac{dE}{dt} \right)_{sys} + \left(\frac{dE}{dt} \right)_{sto} - \left(\frac{dE}{dt} \right)_{syn} - \left(\frac{dE}{dt} \right)_{ic} \right] - \left(\frac{dE}{dt} \right)_{adb}$$

Hp. Self similar scenario:

$$R(t) = R_0 \left(\frac{t}{t_0}\right)^p \qquad \qquad \gamma(t) = \gamma_0 \left(\frac{t}{t_0}\right)^{-p}$$

Possible interpretation of the hardness intensity correlation (HIC):

$$E'_p \sim \left(\frac{t}{t_0}\right)^{-4p}$$
, $S'_p \sim \left(\frac{t}{t_0}\right)^{-6p}$ $S'_p \propto (E'_p)^{3/2}$

The HIC has a peak index of ~ 1.6

Massaro & Grindlay 2010

Spectral curvature behavior

Observed spectral behavior

We do not see drastic variations of the curvature during GRB single pulses

Simulated spectral evolution

CONCLUSIONS

- Log-parabola vs Band or Photospheric models
 From the statistical point of view 5 parameters vs 3 parameters
 (in agreement with Fermi LAT GRBs detections)
- 2. From the physical point of view a priori physical background
- 3. Time integrated spectra are well described in terms of the Band function because there is: spectral evolution (power-law at low and at high energy)
- 4. Time resolved spectra are very well described in terms of log-parabolic model (up to now no exceptions)
- 5. No drastic variation of the spectral curvature during GRB single pulses (CAREFUL must be tested) (signatures of adiabatic expansion and re-acceleration) and something more..

X-ray flares in GRB afterglows

- 1. Anticorrelation between Ep and b
- 2. No drastic variations of b
- 3. Inconsistent with thermal (i.e. Blackbody) emission
- 4. Same model adopted for GRB prompt emission and not only

Everything in poster 03.14

GRB conference in Rome 2004

R. Blandford concluding remarks

Curved spectra in jets

Cygnus A (FR II) (Carilli et al. 1991)

Crab Pulsar (Campana et al. 2008)

Vela plerion (Mangano et al. 2005)

Curved spectra in jets

BL Lacs (Massaro et al. 2006, 2008)

Backup slides

The synchrotron line of death Preece et al. 1998

The synchrotron line of death

Asymmetric log-parabola

$$F(E) = K \left(\frac{E}{E_0}\right)^{-a-b \log(1+E/E_a)}$$