Are GRB jets magnetically-dominated, or baryon-rich, or lepton-rich?

M.V. Medvedev S. Pothapragada S. Reynolds (KU)

GRB conference

Annapolis, 10/01 2010

GRB spectral variability

Spectra are harder at larger fluxes

for $P(v) \sim v^{l+\alpha}$ below spectral peak

25% of GRBs exhibit this correlation

Rapid spectral variability

⁽Kaneko, et al. ApJS 2006; PhD thesis)

Baryonic shock model

Weibel in shocks

A grand challenge

Shock PIC simulations → shocks are the synch-like *"standard-spectral-shape" sources* (unless IC or optical depth included talks by Diagne, Pe'er,...)

Real GRB spectra

 \rightarrow variable & often inconsistent with synchrotron

PIC simulations are not yet adequate:

- too short, too small box (foreshock emission, CR feedback)
- ambient field (whistlers)

GRBs are not due to shocks:

- Collisional dissipation, optical depth effects (e.g., Beloborodov talk)
- Poynting-flux-driven (magnetically-dominated) outflow
 - → Reconnection

Baryonic ejecta

- Dissipates energy and radiates via shocks
- Shocks are steady-state structures:
 - Ittle or no emission variability
 - little or no radiation anisotropy
- Emit synch-like (and possibly flat) spectra:
 - no "synch-violating" spectra
 - need additional physics (self-absorption,???)

-- alternatives needed --

Magnetically-dominated ejecta

(Lyutikov & Blandford 2003)

Reconnection (e+e-)

Radiation from

dW/dŋdω [arb. unit]

Radiation during Weibel instability

PIC 3D e⁺e⁻ simulations (Frederiksen, Haugboelle, Nordlund, Medvedev, ApJL, 2010) Radiation is obtained self-consistently in situ, "on the flight" from the same particles

Radiation during Weibel instability

PIC 3D e⁺e⁻ simulations (by Frederiksen, Haugboelle, Nordlund) Radiation is obtained self-consistently in situ, "on the flight" from the same particles

Modeling

Intrinsic anisotropy of co-moving spectra

Clue on B-field orientation in GRB jet

Assume magnetic field dominated jet; radiation is produced in reconnection. Consider radial field (due to Contact Discont. instability) and poloidal field (large-scale jet field)

Clue on B-field orientation in GRB jet

Assume magnetic field dominated jet; radiation is produced in reconnection. Consider radial field (due to Contact Discont. instability) and poloidal field (large-scale jet field)

tangential field configuration model is at odds with most observations

Conclusions

Paradigm shift:

- Emissivity is intrinsically anisotropic (angle-dependent)
- Emissivity can also be time-dependent
- Geometry is a major factor:
 - global jet geometry \rightarrow spectral variability
 - jet-in-a-jet orientation \rightarrow diversity of GRBs

Spectrally variable GRBs

- \rightarrow not consistent with optically thin shock model (baryonic and/or leptonic)
- \rightarrow indicative of magnetic reconnection (Poynting flux dominated jets)
 - $\alpha > -2/3$ non-synchrotron spectra are *jitter* and/or *small-pitch-angle*.
- \rightarrow models with variable optical thickness (& thermal+PL) need more studies

Low or no spectral evolution GRBs

- \rightarrow can be from shocks
 - \rightarrow flat, $\alpha \sim -1$, *jitter spectra* leptonic jets preferred
 - → synchrotron-like baryonic ejecta preferred